Improved age-hardening response and altered precipitation behavior of Al-5.2Mg-0.45Cu-2.0Zn (wt%) alloy with pre-aging treatment

2017 ◽  
Vol 691 ◽  
pp. 40-43 ◽  
Author(s):  
Cheng Cao ◽  
Di Zhang ◽  
Linzhong Zhuang ◽  
Jishan Zhang
2010 ◽  
Vol 89-91 ◽  
pp. 395-399 ◽  
Author(s):  
Masahiro Murakami ◽  
Nobuo Nakada ◽  
Toshihiro Tsuchiyama ◽  
Setsuo Takaki ◽  
Yoshitaka Adachi

The multiple precipitation behavior of NbC and Cu particles in martensitic structure was investigated by using 0.05C-0.46Nb-2Cu-1.5Mn steel (NbC-Cu steel). Additionally, 0.05C-0.45Nb-2Mn steel (NbC steel) and 2Cu-5Mn steel (Cu steel) were also prepared to examine the respective precipitation behaviors of NbC and Cu. Aging treatment at 873K after quenching revealed that these steels exhibit typical age hardening. Comparing the NbC steel and Cu steel in the precipitation rate, the Cu precipitated much faster than the NbC. On the other hand, the peak hardness in NbC-Cu steel is higher than that by the respective precipitations in NbC steel and Cu steel. Besides, the aging time for the peak hardness in NbC-Cu steel was between those in NbC steel and Cu steel. This suggests that the NbC and Cu particles were separately precipitated within martensite matrix and each of them contributed to the hardening in NbC-Cu steel. As a result of TEM investigation for crystallographic characteristics of the precipitates, the NbC and Cu particles had different crystallographic orientation relationship with tempered martensite matrix: Baker-Nutting relationship for NbC particle and Kurdjumov-Sachs relationship for Cu particle.


Author(s):  
J. E. O'Neal ◽  
K. K. Sankaran

Al-Li-Cu alloys combine high specific strength and high specific modulus and are potential candidates for aircraft structural applications. As part of an effort to optimize Al-Li-Cu alloys for specific applications, precipitation in these alloys was studied for a range of compositions, and the mechanical behavior was correlated with the microstructures.Alloys with nominal compositions of Al-4Cu-2Li-0.2Zr, Al-2.5Cu-2.5Li-0.2Zr, and Al-l.5Cu-2.5Li-0.5Mn were argon-atomized into powder at solidification rates ≈ 103°C/s. Powders were consolidated into bar stock by vacuum pressing and extruding at 400°C. Alloy specimens were solution annealed at 530°C and aged at temperatures up to 250°C, and the resultant precipitation was studied by transmission electron microscopy (TEM).The low-temperature (≲100°C) precipitation behavior of the Al-4Cu-2Li-0.2Zr alloy is a combination of the separate precipitation behaviors of Al-Cu and Al-Li alloys. The age-hardening behavior at these temperatures is characteristic of Guinier-Preston (GP) zone formation, with additional strengthening resulting from the coherent precipitation of δ’ (Al3Li, Ll2 structure), the presence of which is revealed by the selected-area diffraction pattern (SADP) shown in Figure la.


Author(s):  
M.J. Witcomb ◽  
U. Dahmen ◽  
K.H. Westmacott

Cu-Cr age-hardening alloys are of interest as a model system for the investigation of fcc/bcc interface structures. Several past studies have investigated the morphology and interface structure of Cr precipitates in a Cu matrix (1-3) and good success has been achieved in understanding the crystallography and strain contrast of small needle-shaped precipitates. The present study investigates the effect of small amounts of phosphorous on the precipitation behavior of Cu-Cr alloys.The same Cu-0.3% Cr alloy as was used in earlier work was rolled to a thickness of 150 μm, solution treated in vacuum at 1050°C for 1h followed by quenching and annealing for various times at 820 and 863°C.Two laths and their corresponding diffraction patterns in an alloy aged 2h at 820°C are shown in correct relative orientation in Fig. 1. To within the limit of accuracy of the diffraction patterns the orientation relationship was that of Kurdjumov-Sachs (KS), i.e. parallel close-packed planes and directions.


2020 ◽  
Vol 162 ◽  
pp. 110184
Author(s):  
Bo Jiang ◽  
Haisheng Wang ◽  
Danqing Yi ◽  
Yu Tian ◽  
Fanghua Shen ◽  
...  

2012 ◽  
Vol 567 ◽  
pp. 92-95 ◽  
Author(s):  
Yue Jiang ◽  
Ying Ying Ai ◽  
Qi Ting Wang

The changes of precipitation phases and matrix structures in Fe-13Cr-7Ni-4Mo-4Co-2W maraging stainless steel at different temperature were studied by using the Thermo-Calc software. The research was on the microstructures and precipitation behaviors of the maraging stainless steel, the performance is investigated through solution and aging treatment by TEMand SADP. The calculation results were in good agreement with the experiments, which demonstrated that when maraging stainless steel was treated in high temperature, the Laves-Fe2Mo precipitates became totally dissolved as the temperature was above 1050°C, and about 8% of R phase was found during aging. The calculation provides a guiding significant to the establishment of reasonable heat treatment process and the development of new materials.


2012 ◽  
Vol 710 ◽  
pp. 563-568 ◽  
Author(s):  
S. Chenna Krishna ◽  
K. Thomas Tharian ◽  
Bhanu Pant ◽  
Ravi S. Kottada

Among the copper alloys, the Cu-3Ag-0.5Zr alloy is one of the potential candidates for combustion chamber of liquid rocket engine because of its optimum combination of high strength with thermal conductivity. The present study is a detailed characterization of microstructure, strength, and electrical conductivity during the aging treatment. The aging cycle for Cu-3Ag-0.5Zr alloy after the solution treatment (ST) was optimized to obtain higher hardness without compromising on electrical conductivity. The precipitates responsible for strengthening in aged samples are identified as nanocrystalline Ag precipitates with an average diameter of 9.0±2.0 nm.


2018 ◽  
Vol 941 ◽  
pp. 1167-1172
Author(s):  
Chihiro Iwamoto ◽  
Fumio Watanabe ◽  
Risei Koitabashi

Cu-Pd-Ag alloy is widely used in electronic device applications due to its relatively low electric resistance. To obtain higher strength wire, age-hardening is usually conducted to this alloy wire. However, the detailed hardening mechanism of Cu-Pd-Ag alloy was not clarified enough. In the present paper, we investigated the microstructure and hardness of the Cu-Pd-Ag alloy wire with aging treatment. Original alloy contained many rods with an Ag-rich α phase extended along the wire direction in a Cu-rich α phase matrix. After heat treatment of 623K with 1 hour, the matrix was transformed to the β phase contained many elongated α2 phases as nanolamellar structure. Many β’ phase precipitated in the rods. Hardness measured with nanoindentation test showed that the matrix had a higher value than that of the rods. In the Cu-Pd-Ag alloy wire, the nanolamellar structure of the matrix was revealed to contribute to the hardening of the wire.


2010 ◽  
Vol 654-656 ◽  
pp. 679-682 ◽  
Author(s):  
Hiroshi Yamada ◽  
Mitsuaki Furui ◽  
Susumu Ikeno ◽  
Yukio Sanpei ◽  
Katsuya Sakakibara ◽  
...  

AM60 magnesium alloy castings gave the solution treatment at 688K for 86.4ks. After that, aging treatment was carried out at three temperatures of 473, 498 and 523K. The age hardening curve obtained, hardness of all the specimens in the condition of peak aging was increased by decreasing the aging temperature. In the condition of long aging time, a cellular precipitation grows up from grain boundary to crystal grain. Fine cellular precipitation and intergranular precipitation obviously occurs at the lower aging temperature.


2012 ◽  
Vol 710 ◽  
pp. 11-18
Author(s):  
Yoon Uk Heo ◽  
Hu Chul Lee

Grain boundary embrittlement and de-embrittlement observed in age hardening iron alloys were reviewed. Fe-Mn-Ni and Fe-Ni-Ti alloys show excellent hardening response during aging treatment. However these alloys all suffer grain boundary embrittlemnt and show no tensile ductility even after very short aging treatment. Precipitation of intermetallic phases, θ-MnNi in Fe-Mn-Ni alloys and η-Ni3Ti in Fe-Ni-Ti alloys, at grain or lath boundaries was suggested as the reason for the weakening of grain boundary strength. Grain boundary strength recovered when these precipitates transform to austenite after extended aging. Dislocation glide or dislocation climb did critical role in conversion of these grain boundary precipitates to austenite.


Sign in / Sign up

Export Citation Format

Share Document