Influence of microcomposition of solder alloy on the distribution of local thermal conductivities in semiconductor-ceramic solder joints investigated by laser thermal wave and X-ray spectral methods

2019 ◽  
Vol 800 ◽  
pp. 23-28
Author(s):  
A.L. Glazov ◽  
V.S. Kalinovskii ◽  
A.V. Nashchekin ◽  
K.L. Muratikov
1991 ◽  
Vol 56 (12) ◽  
pp. 2917-2935 ◽  
Author(s):  
Eva Klinotová ◽  
Václav Křeček ◽  
Jiří Klinot ◽  
Miloš Buděšínský ◽  
Jaroslav Podlaha ◽  
...  

3β-Acetoxy-21,22-dioxo-18α,19βH-ursan-28,20β-olide (IIIa) reacts with acetic anhydride in pyridine under very mild conditions affording β-lactone IVa and γ-lactones Va and VIIa as condensation products. On reaction with pyridine, lactones Va and VIIa undergo elimination of acetic acid to give unsaturated lactones VIIIa and IXa, respectively. Similarly, the condensation of 20β,28-epoxy-21,22-dioxo-18α,19βH-ursan-3β-yl acetate (IIIb) with acetic anhydride leads to β-lactone IVb and γ-lactone Vb; the latter on heating with pyridine affords unsaturated lactone VIIIb and 21-methylene-22-ketone Xb. The structure of the obtained compounds was derived using spectral methods, particularly 1H and 13C NMR spectroscopy; structure of lactone IVa was confirmed by X-ray diffraction.


2005 ◽  
Vol 47 (5) ◽  
pp. 440-446 ◽  
Author(s):  
Yu. A. Teterin ◽  
A. Yu. Teterin

2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


1982 ◽  
Vol 60 (11) ◽  
pp. 1374-1376 ◽  
Author(s):  
George R. Pettit ◽  
Gordon M. Cragg ◽  
Delbert L. Herald ◽  
Jean M. Schmidt ◽  
Prasert Lohavanijaya

The South African tree Combretumcaffrum has been shown to contain a constituent capable of significantly reversing astrocyte formation employing the National Cancer Institute's 9ASK system. The constituent responsible for astrocyte reversal was isolated and designated combretastatin (1). Structural elucidation was initiated employing spectral methods and completed by X-ray crystallographic analysis. By this means combretastatin was assigned structure 1. Further biological evaluation and a total synthesis are now in progress.


2011 ◽  
Vol 41 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Limin Ma ◽  
Fu Guo ◽  
Guangchen Xu ◽  
Xitao Wang ◽  
Hongwen He ◽  
...  

2019 ◽  
Vol 16 (2) ◽  
pp. 91-102
Author(s):  
Lars Bruno ◽  
Benny Gustafson

Abstract Both the number and the variants of ball grid array packages (BGAs) are tending to increase on network printed board assemblies with sizes ranging from a few millimeter die size wafer level packages with low ball count to large multidie system-in-package (SiP) BGAs with 60–70 mm side lengths and thousands of I/Os. One big challenge, especially for large BGAs, SiPs, and for thin fine-pitch BGA assemblies, is the dynamic warpage during the reflow soldering process. This warpage could lead to solder balls losing contact with the solder paste and its flux during parts of the soldering process, and this may result in solder joints with irregular shapes, indicating poor or no coalescence between the added solder and the BGA balls. This defect is called head-on-pillow (HoP) and is a failure type that is difficult to determine. In this study, x-ray inspection was used as a first step to find deliberately induced HoP defects, followed by prying off of the BGAs to verify real HoP defects and the fault detection correlation between the two methods. The result clearly shows that many of the solder joints classified as potential HoP defects in the x-ray analysis have no evidence at all of HoP after pry-off. This illustrates the difficulty of determining where to draw the line between pass and fail for HoP defects when using x-ray inspection.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 549
Author(s):  
Vimal Nair ◽  
Min Cheol Kim ◽  
James A. Golen ◽  
Arnold L. Rheingold ◽  
Gabriel A. Castro ◽  
...  

A new cytotoxic thiodepsipeptide, verrucosamide (1), was isolated along with the known, related cyclic peptide thiocoraline, from the extract of a marine-derived actinomycete, a Verrucosispora sp., our strain CNX-026. The new peptide, which is composed of two rare seven-membered 1,4-thiazepane rings, was elucidated by a combination of spectral methods and the absolute configuration was determined by a single X-ray diffraction study. Verrucosamide (1) showed moderate cytotoxicity and selectivity in the NCI 60 cell line bioassay. The most susceptible cell lines were MDA-MB-468 breast carcinoma with an LD50 of 1.26 µM, and COLO 205 colon adenocarcinoma with an LD50 of 1.4 µM. Also isolated along with verrucosamide were three small 3-hydroxy(alkoxy)-quinaldic acid derivatives that appear to be products of the same biosynthetic pathway.


2018 ◽  
Vol 30 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Fakhrozi Che Ani ◽  
Azman Jalar ◽  
Abdullah Aziz Saad ◽  
Chu Yee Khor ◽  
Roslina Ismail ◽  
...  

Purpose This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly. Design/methodology/approach This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine. Findings The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards. Practical implications This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry. Originality/value The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.


Author(s):  
Hiroyuki Tsuritani ◽  
Toshihiko Sayama ◽  
Yoshiyuki Okamoto ◽  
Takeshi Takayanagi ◽  
Masato Hoshino ◽  
...  

The reliability of solder joints on printed circuit boards (PCBs) is significantly affected by thermal fatigue processes due to downsizing and high density packaging in electronic components. Accordingly, there is a strong desire in related industries for development of a new nondestructive inspection technology to detect fatigue cracks appearing in these joints. The authors have applied the SP-μCT, a synchrotron radiation X-ray microtomography system, to the nondestructive observation of such cracks. However, for planar objects such as PCB substrates, reconstruction of CT images is difficult due to insufficient X-ray transmission along the parallel axis of the substrate. In order to solve this problem, a synchrotron radiation X-ray laminography system was developed to overcome the size limits of such specimens. In this work, this system was applied to the three-dimensional, nondestructive observation of thermal fatigue cracks in solder joints, for which X-ray CT inspection has been extremely difficult. The observed specimens included two typical joint structures formed using Sn-3.0Ag-0.5Cu solder: (1) a fine pitch ball grid array (FBGA) joint specimen in which an LSI package is connected to a substrate by solder bumps 360 μm in diameter, and (2) a die-attached specimen in which a 3 mm square ceramic chip is mounted on a substrate. The optical system developed for use in X-ray laminography was constructed to provide a rotation axis with a 30° tilt from the right angle to the X-ray beam, and to obtain X-ray projection images via the beam monitor. The same solder joints were observed successively using the laminography system at beamline BL20XU at SPring-8, the largest synchrotron radiation facility in Japan. In the FBGA type specimen, fatigue cracks were clearly observed to appear at the periphery of the joint interface, and to propagate gradually to the inner regions of the solder bumps as thermal cycling proceeded. In contrast, in the die-attached joint specimen, micro-cracks were observed to appear and propagate through the thin solder layer. An important observation was that these micro-cracks become interconnected prior to propagation of the main fatigue crack. The fatigue crack propagation lifetime was also estimated in both specimens by measuring the crack surface area and calculating the average crack propagation rate through the three-dimensional images. Consequently, the sectional images obtained by the laminography system clearly show the process of crack propagation due to thermal cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document