Microstructure refinement and mechanical properties of the NiCoMnIn alloy obtained by arc melting technique from mechanically alloyed powder

2020 ◽  
pp. 157841
Author(s):  
Edyta Matyja ◽  
Krystian Prusik ◽  
Maciej Zubko ◽  
Grzegorz Dercz
2007 ◽  
Vol 23 ◽  
pp. 123-126
Author(s):  
Radu L. Orban ◽  
Mariana Lucaci

This paper investigates the effect of Fe, Cr and B additions, in small proportions, as alloying elements in Ni3Al with the purpose to reduce its intrinsic fragility and extrinsic embrittlement and to enhance, in the same time, its mechanical properties. It represents a development of some previous research works of the authors, proving that Ni3Al-Fe-Cr-B alloys obtained by reactive synthesis (SHS) starting from Mechanically Alloyed powder mixtures have superior both room temperature tensile strength and ductility, and compression ones at temperatures up to 800 °C, than pure Ni3Al. These create premises for their using as superalloys substitutes.


2003 ◽  
Vol 12 (4) ◽  
pp. 096369350301200
Author(s):  
Janakarajan Ramkumar ◽  
Atsushi Kakitsuji ◽  
S.K. Malhotra ◽  
R. Krishnamurthy ◽  
H. Mabuchi ◽  
...  

Ti-50Al alloy and Ti-47Al-3W alloy and its composites have been prepared by reactive arc melting technique using elemental powders. Composites have been reinforced using 3.5, 10 and 18 vol% of Ti2AlC in the matrix of TiAl with and without addition of W and C. By the addition of tungsten and carbon to TiAl alloy, we have produced composites that are reinforced randomly by reacted rod like Ti2AlC particles with fine precipitate of Ti2AlC particles and B2 particles. Compared to Ti-50Al alloys, the Ti-47Al-3W alloy and its composites have superior mechanical properties like bending strength, hardness, fracture toughness and erosion. Ti-47Al-3W/3.5 vol% Ti2AlC has excellent erosion resistance because of the dispersion of fine Ti2AlC and B2 particles in the matrix.


2012 ◽  
Vol 1516 ◽  
pp. 317-322 ◽  
Author(s):  
C. Seemüller ◽  
M. Heilmaier ◽  
T. Hartwig ◽  
M. Mulser ◽  
N. Adkins ◽  
...  

ABSTRACTIn this study different powder metallurgical processing routes, commonly used for refractory metal based materials, were evaluated on their impact on mechanical properties of a multi-component Nb-20Si-23Ti-6Al-3Cr-4Hf (at.%) alloy. Powder was produced by gas-atomization or high energy mechanical alloying of elemental powders and then consolidated either by HIPing or powder injection molding (PIM). The PIM process requires fine particles. In this investigation powder batches of gas-atomized powder (< 25 μm) and mechanically alloyed powder (< 25 μm) were compacted via PIM. Fine (< 25 μm) and coarser (106-225 μm) particle fractions of gas-atomized powder were compacted via HIPing for comparison. Quantitative analysis of the resulting microstructures regarding porosity, phase formation, phase distribution, and grain size was carried out in order to correlate them with the ensuing mechanical properties such as compressive strength at various temperatures.


2014 ◽  
Vol 881-883 ◽  
pp. 867-871
Author(s):  
Ji Fang Lu ◽  
Zhao Hui Zhang ◽  
Fu Chi Wang

In this paper, in situ TiB reinforced Ti-3Al, Ti-6Al and Ti-6Al-4V matrix composites were prepared by arc-melting technique utilizing the reaction between Ti and TiB2, and then forged in the α+β phase field. Phase identification was carried out via X-ray diffraction. Microstructure of the composites was studied by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties of the composites after forging were measured at various temperatures by tensile experiment. The results showed that Ti-6Al-4V-2TiB composite exhibits fine equiaxed matrix microstructure with a grain size of 5-10μm. The tensile strength and elongation of the composite at room temperature reached 1069MPa and 10.0%, respectively.


2010 ◽  
Vol 654-656 ◽  
pp. 460-463 ◽  
Author(s):  
Zhi Guang Liu ◽  
Chang Jiang Zhang ◽  
Li Hua Chai ◽  
Yu Yong Chen ◽  
Kee Do Woo

A near-α high temperature titanium alloy, Ti-6Al-2.5Sn-4Zr-0.7Mo-0.30Si, was produced with various Y contents from 0 to 0.7wt% by arc-melting technique to study the influence of Y on its microstructure and mechanical properties. It was found that small amount of Y obviously refines the grain size of Ti-6Al-2.5Sn-4Zr-0.7Mo-0.30Si alloy. SEM and TEM observations revealed that Y-containing phase precipitated at the β grain boundary in the form of Y2O3 particles. Hardness and compression tests performed at room temperature revealed the strengthening effect of Y.


Author(s):  
Sarwar Ibrahim Saleh ◽  
Musa Gögebakan ◽  
M. S. Omar ◽  
Hakan Yaykasli ◽  
Celal Kursun ◽  
...  

Introduction: The Al 85-Ni15 alloy with 99.99% purity of Al and Ni were prepared by an arc melting technique system. The annealing effect onthe microstructure properties, phase transformation and micro-hardness for the Al-Ni alloy system were investigated. Material and Methods:The alloys were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Differential Thermal Analysis (DTA) as well as Vickers micro-hardness measurement. Results and Discussion: The quantitative results confirm that the chemical composition of the alloys is very close to compositions and the microstructures are in typical lamellar morphology. Mechanical properties for the as-prepared samples and subsequently heat-treated samples were measured by a Vickers indenter. Values of the micro-hardness (HV) Conclusions: According the XRD pattern analysis a multi phases produced, such as Al, AlNi3in room temperature, Al3Ni2, Al0.42Ni0.58 at 200ºC, Al1.1Ni0.9 at 300ºC and Al 0.802Ni0.198, AlNi3 and AlNi at 400ºC, and Al0.802Ni0.198, AlNi3 and AlNi for 500ºC. Similar approached were obtained from the results of SEM and DTA measurements. Annealing treatments are visibly affecting the alloy phase formation with different phases at different temperature. and the elastic modulus (E) of the as prepared sample are 132.9±0.1 kgfmm-2 (1.329±0.1 GPa) and 80.340±0.1 GPa, respectively. Furthermore, the characteristic of the materials plasticity (δH) value was calculated to be 0.85. The micro-hardness values are decrease with the increase of annealing temperatures.


Author(s):  
T. E. Mitchell ◽  
P. B. Desch ◽  
R. B. Schwarz

Al3Zr has the highest melting temperature (1580°C) among the tri-aluminide intermetal1ics. When prepared by casting, Al3Zr forms in the tetragonal DO23 structure but by rapid quenching or by mechanical alloying (MA) it can also be prepared in the metastable cubic L12 structure. The L12 structure can be stabilized to at least 1300°C by the addition of copper and other elements. We report a TEM study of the microstructure of bulk Al5CuZr2 prepared by hot pressing mechanically alloyed powder.MA was performed in a Spex 800 mixer using a hardened steel container and balls and adding hexane as a surfactant. Between 1.4 and 2.4 wt.% of the hexane decomposed during MA and was incorporated into the alloy. The mechanically alloyed powders were degassed in vacuum at 900°C. They were compacted in a ram press at 900°C into fully dense samples having Vickers hardness of 1025. TEM specimens were prepared by mechanical grinding followed by ion milling at 120 K. TEM was performed on a Philips CM30 at 300kV.


Sign in / Sign up

Export Citation Format

Share Document