Dual emission mode for yellowish-green borophosphate-based solid solution La7O6(BO3)(PO4)2:Er

2021 ◽  
pp. 158631
Author(s):  
Zhigang Cai ◽  
Dan Yang ◽  
Zhuohui Zhang ◽  
Xinchen Ge ◽  
Yuchuan Luo ◽  
...  
Author(s):  
Mu-Huai Fang ◽  
Hsi-Ping Hsueh ◽  
Thangaraji Vasudevan ◽  
Wen-Tse Huang ◽  
Zhen Bao ◽  
...  

Nitridophosphates are regarded as an emerging compound class with applications in phosphor-converted light-emitting diodes. In this work, we aim to develop a series of Ca2−xSrxPN3:Eu2+ nitridophosphate phosphors through a solid-solution...


1995 ◽  
Vol 59 (394) ◽  
pp. 143-148 ◽  
Author(s):  
A. Pring ◽  
W. D. Birch ◽  
J. Dawe ◽  
M. Taylor ◽  
M. Deliens ◽  
...  

AbstractKintoreite is a new lead iron phosphate mineral in the alunite-jarosite family, from Broken Hill, New South Wales, Australia. It is the phosphate analogue of segnitite and the iron analogue of plumbogummite. Kintoreite occurs as clusters and coatings of cream to yellowish green rhombohedral crystals up to 2 mm high and with the principal form {112}. The mineral also forms waxy, yellowish green globular crusts and hemispheres on other phosphate minerals. These associated species include pyromorphite, libethenite, rockbridgeite/dufrenite, apatite and goethite. Kintoreite formed during oxidation of primary ore rich in galena, in the presence of solutions with high P/(As + S) ratios. The mineral is named for the locality, the Kintore opencut, in which it is most common. A mineral closely resembling kintoreite in composition has also been found at several mines in Germany. Type material is preserved in the Museum of Victoria and the South Australian Museum.Electron microprobe analysis showed a nearly complete spread of compositions across the P-dominant portion of the segnitite-kintoreite series. The selected type specimen has an empirical formula of Pb0.97(Fe2.95Zn0.13Cu0.02)Σ3.10[(PO4)1.30(AsO4)0.39(SO4)0.18(CO3)0.11]Σ1.98(OH)5.45·0.74H2O, calculated on the basis of 14 oxygens and with all Fe trivalent. The simplified formula is PbFe3(PO4)2(OH,H2O)6. Kintoreite crystals are translucent with a vitreous to adamantine lustre, with globules appearing waxy. The streak is pale yellowish green and the Mohs hardness is ∼ 4. Crystals show good cleavage on {001} and are brittle with a rough fracture. The calculated density is 4.34 g cm−3. Kintoreite crystals are uniaxial negative with RIs between 1.935 and 1.955 and show light yellowish green to medium yellow pleochroism.The strongest lines in the X-ray powder pattern are (dobs, Iobs, hkl) 3.07(100) 113; 5.96(90)101; 3.67(60)110; 2.538(50)024; 2.257(50)107; 1.979(50)303; 1.831(40)220. The X-ray data were indexed on a hexagonal unit cell by analogy with beudantite, giving a = 7.325(1) Å, c = 16.900(3) Å, V = 785.3(5) Å3 and Z = 3. The probable space group is Rm, by analogy with beudantite and other members of the alunite-jarosite family. Powder X-ray diffraction data for several intermediate members suggest that the segnitite-kintoreite series may not represent ideal solid solution.During the study of kintoreite, part of the type specimen of lusungite from Zaïre was obtained and shown to be goyazite. The IMA's Commission on New Minerals and Mineral Names has voted to discredit lusungite as a species, and has approved the renaming of the ‘lusungite’ group as the segnitite group. However, as relationships between crystal structure, order-disorder and solid solution in the Pb-rich minerals of the alunite-jarosite family are not well documented, the nomenclatural changes resulting from this study should be seen as interim only.


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Author(s):  
A. Christou ◽  
J. V. Foltz ◽  
N. Brown

In general, all BCC transition metals have been observed to twin under appropriate conditions. At the present time various experimental reports of solid solution effects on BCC metals have been made. Indications are that solid solution effects are important in the formation of twins. The formation of twins in metals and alloys may be explained in terms of dislocation mechanisms. It has been suggested that twins are nucleated by the achievement of local stress-concentration of the order of 15 to 45 times the applied stress. Prietner and Leslie have found that twins in BCC metals are nucleated at intersections of (110) and (112) or (112) and (112) type of planes.In this paper, observations are reported of a transmission microscope study of the iron manganese series under conditions in which twins both were and were not formed. High strain rates produced by shock loading provided the appropriate deformation conditions. The workhardening mechanisms of one alloy (Fe - 7.37 wt% Mn) were studied in detail.


Author(s):  
Jordi Marti ◽  
Timothy E. Howson ◽  
David Kratz ◽  
John K. Tien

The previous paper briefly described the fine microstructure of a mechanically alloyed oxide dispersion strengthened nickel-base solid solution. This note examines the fine microstructure of another mechanically alloyed system. This alloy differs from the one described previously in that it is more generously endowed with coherent precipitate γ forming elements A1 and Ti and it contains a higher volume fraction of the finely dispersed Y2O3 oxide. An interesting question to answer in the comparative study of the creep and stress rupture of these two ODS systems is the role of the precipitate γ' in the mechanisms of creep and stress rupture in alloys already containing oxide dispersoids.The nominal chemical composition of this alloy is Ni - 20%Cr - 2.5%Ti - 1.5% A1 - 1.3%Y203 by weight. The system receives a three stage heat treatment-- the first designed to produce a coarse grain structure similar to the solid solution alloy but with a smaller grain aspect ratio of about ten.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.


Author(s):  
S. Herd ◽  
S. M. Mader

Single crystal films in (001) orientation, about 1500 Å thick, were produced by R-F sputtering of Al + 4 wt % Cu onto cleaved KCl at 150°C substrate temperature. The as-deposited films contained numerous θ-CuAl2 particles (C16 structure) about 0.1μ in size. They were transferred onto Mo screens, solution treated and rapidly cooled (within about ½ min) so as to retain a homogeneous solid solution. Subsequently, the films were aged in vacuum at various temperatures in order to induce precipitation and to compare structures and morphologies of precipitate particles in Al-Cu films with those found in age hardened bulk material.Aging for 3 weeks at 60°C or 48 hrs at 100°C did not produce any detectable change in high resolution micrographs or diffraction patterns. In this range Guinier-Preston zones (GP) form in quenched bulk material. The absence of GP in the present experiments in this aging range is perhaps due to the cooling rate employed, which might be more equivalent to an aged and reverted bulk material than to a quenched one.


Sign in / Sign up

Export Citation Format

Share Document