Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle

2005 ◽  
Vol 67 (1-2) ◽  
pp. 125-143 ◽  
Author(s):  
Kiyotaka Shibata ◽  
Kunihiko Kodera
2011 ◽  
Vol 11 (10) ◽  
pp. 5045-5077 ◽  
Author(s):  
K. Semeniuk ◽  
V. I. Fomichev ◽  
J. C. McConnell ◽  
C. Fu ◽  
S. M. L. Melo ◽  
...  

Abstract. The impact of NOx and HOx production by three types of energetic particle precipitation (EPP), auroral zone medium and high energy electrons, solar proton events and galactic cosmic rays on the middle atmosphere is examined using a chemistry climate model. This process study uses ensemble simulations forced by transient EPP derived from observations with one-year repeating sea surface temperatures and fixed chemical boundary conditions for cases with and without solar cycle in irradiance. Our model results show a wintertime polar stratosphere ozone reduction of between 3 and 10 % in agreement with previous studies. EPP is found to modulate the radiative solar cycle effect in the middle atmosphere in a significant way, bringing temperature and ozone variations closer to observed patterns. The Southern Hemisphere polar vortex undergoes an intensification from solar minimum to solar maximum instead of a weakening. This changes the solar cycle variation of the Brewer-Dobson circulation, with a weakening during solar maxima compared to solar minima. In response, the tropical tropopause temperature manifests a statistically significant solar cycle variation resulting in about 4 % more water vapour transported into the lower tropical stratosphere during solar maxima compared to solar minima. This has implications for surface temperature variation due to the associated change in radiative forcing.


2021 ◽  
pp. 1
Author(s):  
X. R. Zhao ◽  
Z. Sheng ◽  
H. Q. Shi ◽  
L. B. Weng ◽  
Y. He

AbstractUsing temperature data measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument from February 2002 to March 2020, the temperature linear trend and temperature responses to the solar cycle (SC), Quasi-Biennial Oscillation (QBO), and El Niño-Southern Oscillation (ENSO) were investigated from 20 km to 110 km for the latitude range of 50°S-50°N. A four-component harmonic fit was used to remove the seasonal variation from the observed monthly temperature series. Multiple linear regression (MLR) was applied to analyze the linear trend, SC, QBO, and ENSO terms. In this study, the near-global mean temperature shows consistent cooling trends throughout the entire middle atmosphere, ranging from -0.28 to -0.97 K/decade. Additionally, it shows positive responses to the solar cycle, varying from -0.05 to 4.53 K/100sfu. A solar temperature response boundary between 50°S and 50°N is given, above which the atmospheric temperature is strongly affected by solar activity. The boundary penetrates deep below the stratopause to ~ 42 km over the tropical region and rises to higher altitudes with latitude. Temperature responses to the QBO and ENSO can be observed up to the upper mesosphere and lower thermosphere. In the equatorial region, 40%-70% of the total variance is explained by QBO signals in the stratosphere and 30%-50% is explained by the solar signal in the upper middle atmosphere. Our results, obtained from 18-year SABER observations, are expected to be an updated reliable estimation of the middle atmosphere temperature variability for the stratospheric ozone recovery period.


1998 ◽  
Vol 16 (2) ◽  
pp. 168-175
Author(s):  
E. M. Apostolov ◽  
D. Altadill ◽  
R. Hanbaba

Abstract. The relative contributions of quasi-periodic oscillations from 2 to 35 days to the variability of foF2 at middle northern latitudes between 42°N and 60°N are investigated. The foF2 hourly data for the whole solar cycle 21 (1976–1986) for four European ionospheric stations Rome (41.9°N, 12.5°E), Poitiers (46.5°N, 0.3°E), Kaliningrad (54.7°N, 20.6°E) and Uppsala (59.8°N, 17.6°E) are used for analysis. The relative contributions of different periodic bands due to planetary wave activity and solar flux variations are evaluated by integrated percent contributions of spectral energy for these bands. The observations suggest that a clearly expressed seasonal variation of percent contributions exists with maximum at summer solstice and minimum at winter solstice for all periodic bands. The contributions for summer increase when the latitude increases. The contributions are modulated by the solar cycle and simultaneously influenced by the long-term geomagnetic activity variations. The greater percentage of spectral energy between 2 to 35 days is contributed by the periodic bands related to the middle atmosphere planetary wave activity.Key words. Ionosphere · Ionosphere-atmosphere interactions · Mid-latitude ionosphere · Plasma waves and instabilities


2005 ◽  
Vol 5 (5) ◽  
pp. 9207-9248 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Haßler ◽  
C. Brühl ◽  
M. Dameris ◽  
M. A. Giorgetta ◽  
...  

Abstract. We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2002, by TOMS/SBUV), of temperature reanalyses (1958 to 2002, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Both models reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability, MAECHAM4-CHEM somewhat better than E39/C. Total ozone and lower stratospheric temperature show similar patterns. Main contributions to the interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to −30 Dobson Units (DU) per decade, or −1.5 K/decade), the QBO (up to 25 DU, or 2.5 K peak to peak), the intensity of the polar vortices (up to 50 DU, or 5 K peak to peak), and from tropospheric weather (up to 30 DU, or 3 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 25 DU, or 2.5 K), and to ENSO (up to 15 DU, or 1.5 K). Volcanic eruptions have resulted in sporadic changes (up to −40 DU, or +3 K). Most stratospheric variations are connected to the troposphere, both in observations and simulations. At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high- latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO.


2009 ◽  
Vol 9 (1) ◽  
pp. 883-903 ◽  
Author(s):  
G. R. Sonnemann ◽  
P. Hartogh ◽  
S. Li ◽  
M. Grygalashvyly ◽  
U. Berger

Abstract. Microwave water vapor measurements between 40 and 80 km over a solar cycle (1996–2006) were carried out in high latitudes at ALOMAR (69.29° N, 16.03° E), Norway. Three larger interuptions in the winters of 1996/97 and 2005/06, and from spring 2001 to spring 2002, a few smaller interruptions of monitoring occurred during this period. The observed year-to-year variability is not directly related to the solar activity. The analysis of the observations by the Fast Fourier Transform (FFT) method revealed peaks close to two years, particularly in the upper monitoring domain. Model calculations by means of the real date model LIMA, Leibniz-Institute Middle Atmosphere model, reflect essential patterns of the water vapor variation. The FFT-analysis of the calculated water vapor mixing ratios also showed peaks of around two years. The real period of the QBO during the monitoring period ranged quite close to two years within the time interval considered, with the exception of the years 2001/02 when the period was essentially longer. Although the QBO is a phenomenon occurring in the zonal wind of the tropical stratosphere, we suppose an influence of the QBO on the water vapor distribution of the mesosphere of high latitudes controlled by transport processes. A possible link could be given by the planetary wave activity triggered by the QBO.


2010 ◽  
Vol 10 (10) ◽  
pp. 24853-24917 ◽  
Author(s):  
K. Semeniuk ◽  
V. I. Fomichev ◽  
J. C. McConnell ◽  
C. Fu ◽  
S. M. L. Melo ◽  
...  

Abstract. The impact of NOx and HOx production by three types of energetic particle precipitation (EPP), aurora, solar proton events and galactic cosmic rays is examined using a chemistry climate model. Ensemble simulations forced by transient EPP derived from observations with one-year repeating sea surface temperatures and fixed chemical boundary conditions were conducted for cases with and without solar cycle in irradiance. Our model results show a wintertime polar stratosphere ozone reduction of between 3 and 10% in agreement with previous studies. EPP is found to modulate the radiative solar cycle effect in the middle atmosphere in a significant way, bringing temperature and ozone variations closer to observed patterns. The Southern Hemisphere polar vortex undergoes an intensification from solar minimum to solar maximum instead of a weakening. This changes the solar cycle variation of the Brewer-Dobson circulation, with a weakening during solar maxima compared to solar minima. In response, the tropical tropopause temperature manifests a statistically significant solar cycle variation resulting in about 4% more water vapour transported into the lower tropical stratosphere during solar maxima compared to solar minima. This has implications for surface temperature variation due to the associated change in radiative forcing.


2014 ◽  
Vol 14 (22) ◽  
pp. 30879-30912
Author(s):  
A. Kuchar ◽  
P. Sacha ◽  
J. Miksovsky ◽  
P. Pisoft

Abstract. This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979–2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.


1995 ◽  
Vol 13 (6) ◽  
pp. 648-655 ◽  
Author(s):  
G. P. Gobbi ◽  
C. Souprayen ◽  
F. Congeduti ◽  
G. Di Donfrancesco ◽  
A. Adriani ◽  
...  

Abstract. We discuss 223 middle atmosphere lidar temperature observations. The record was collected at Frascati (42°N–13°E), during the 41-month period January 1989-May 1992, corresponding to the maximum of solar cycle 22. The choice of this interval was aimed at minimizing the temperature variability induced by the 11-year solar cycle. The average climatology over the 41-month period and comparison with a reference atmosphere (CIRA86) are presented. Monthly temperature variability over the full period, during opposite quasi-biennial oscillation phases and on a short-term scale (0.5–4 h), is analyzed. Results indicate the 50–55-km region as less affected by variability caused by the natural phenomena considered in the analysis. Due to this minimum in natural noise characterizing the atmospheric temperature just above the stratopause, observations of that region are well suited to the detection of possible temperature trends induced by industrial activities.


Sign in / Sign up

Export Citation Format

Share Document