Constructing Three-dimensional Network C, O Co-doped Nitrogen-deficient Carbon Nitride Regulated by Acrylic Fluoroboron overall Marine Antifouling

Author(s):  
Xiaonan Sun ◽  
Linlin Zhang ◽  
Rongrong Chen ◽  
Jingyuan Liu ◽  
Jing Yu ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 133-148
Author(s):  
Ankaj Kaundal ◽  
Pravin Kumar ◽  
Rajendra Awasthi ◽  
Giriraj T. Kulkarni

Aim: The study was aimed to develop mucoadhesive buccal tablets using Aster ericoides leaves mucilage. Background : Mucilages are naturally occurring high-molecular-weight polyuronides, which have been extensively studied for their application in different pharmaceutical dosage forms. Objective: The objective of the present research was to establish the mucilage isolated from the leaves of Aster ericoides as an excipient for the formulation of the mucoadhesive buccal tablet. Method: The mucilage was isolated from the leaves of Aster ericoides by maceration, precipitated with acetone and characterized. Tablets were prepared using wet granulation technique and evaluated for various official tests. Results: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Conclusion: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Other: However, to prove the potency of the polymer, in vivo bioavailability studies in human volunteers are needed along with chronic toxicity studies in suitable animal models.


2014 ◽  
Vol 70 (9) ◽  
pp. i46-i46 ◽  
Author(s):  
Matthias Weil ◽  
Thomas Häusler

The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952).Zh. Fiz. Khim.26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg2+cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting1∞[HgS2/1S2/2] chains are also part of SCN−anions that link these chains with the K+cations into a three-dimensional network. The K—N bond lengths of the distorted KN7polyhedra lie between 2.926 (2) and 3.051 (3) Å.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 346-354
Author(s):  
Guoquan Qi ◽  
Hongxia Yan ◽  
Dongtao Qi ◽  
Houbu Li ◽  
Lushi Kong ◽  
...  

Abstract The chapter deals with the performance evaluation of the polyethylene of raised temperature resistance (PE-RT) and polyethylene (PE) using autoclave test under sour oil and gas medium conditions. The analyses of performance changes showed that PE-RT has good media resistance at 60°C. As the temperature increases, its mechanical properties decrease, accompanied by an increase in weight. Comparative analyses showed that no matter what temperature conditions are, PE-RT media resistance is better than PE80. The better media resistance of PE-RT depends on its higher degree of branching. Short branches are distributed between the crystals to form a connection between the crystals, thereby improving its heat resistance and stress under high-temperature conditions. PE-RT forms an excellent three-dimensional network structure through copolymerization, ensuring that it has better media resistance than PE80. However, the mechanical performance will be attenuated due to the high service temperature.


2013 ◽  
Vol 380-384 ◽  
pp. 4295-4298
Author(s):  
Wen He Zhu ◽  
Jun Jie Xu ◽  
Wei Zhang ◽  
Yan Li ◽  
Xiao Jing Lu ◽  
...  

A highly osteogenic hybrid bioabsorbable scaffold was developed for bone reconstruction. Though the use of a bioabsorbable collagen and chitosan scaffold for loading velvet antler polypeptide to repair bone defect and drug treatment. Velvet antler polypeptide and collagen were extracted for developing the compounded material. The SEM results show that the collagen and chitosan scaffold maintain the natural three dimensional network structures. The cell proliferation experiment result show that the can promote the osteoblast proliferation for a long time . These results indicated that this compound scaffold can sustainable to release drug and is a good material in bone defect and drug treatment.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4752
Author(s):  
Xiaoqing Qu ◽  
Yuliya Nazarenko ◽  
Wei Yang ◽  
Yuanyang Nie ◽  
Yongsheng Zhang ◽  
...  

The oat β-glucan (OG) was added into set-type yogurt as a functional ingredient, in order to evaluate effects on the rheological characteristics and microstructure of set-type yogurt. When the OG concentration increased from 0 to 0.3%, the WHC gradually increased. At 0.3% OG, the set-type yogurt had the highest WHC of 94.67%. Additionally, the WHC continuously decreased, reaching the lowest WHC (about 80%) at 0.5% OG. When 0.3% OG was added, the highest score of sensory evaluation was about 85. The rheological result showed that the fermentation process went through the changes as follows: solid → liquid → solid → liquid. The addition of 0.3% OG decreased the fermentation time of set-type yogurt by about 16 min, making yogurt more inclined to be liquid. The acidity of set-type yogurt with OG was slightly higher. The result of microstructure showed that the addition of OG destroyed the three-dimensional network structure of yogurt, and some spherical aggregate particles could be clearly observed at 0.3% OG. Overall, this study provided a theoretical basis for the application of OG in set-type yogurt.


Sign in / Sign up

Export Citation Format

Share Document