Enhanced bioenergy production in rural areas: Synthetic urine as a pre-treatment for dry anaerobic fermentation of wheat straw

2020 ◽  
Vol 260 ◽  
pp. 121164 ◽  
Author(s):  
Qiuheng Zhu ◽  
Xiaoguang Li ◽  
Guowen Li ◽  
Jiaxi Li ◽  
Caole Li ◽  
...  
2015 ◽  
Vol 2 (2) ◽  
pp. 66-93 ◽  
Author(s):  
Heike Sträuber ◽  
Franziska Bühligen ◽  
Sabine Kleinsteuber ◽  
Marcell Nikolausz ◽  
Katharina Porsch

2020 ◽  
pp. 103-110
Author(s):  
Larysa Sablii ◽  
Oleksandr Obodovych ◽  
Vitalii Sydorenko ◽  
Tamila Sheyko

This paper presents the results of studies of isolation lignin and hemicelluloses efficiency during the pre-treatment of wheat straw for hydrolysis in a rotary-pulsation apparatus. The pre-treatment of lignocellulosic raw materials for hydrolysis is a necessary step in the second-generation bioethanol production technology. The lignocellulose complex is destroyed during this process, and this allows hydrolytic enzymes access to the surface of cellulose fibers. The pre-treatment is the most energy-consuming stage in bioethanol production technology, since it usually occurs at high temperature and pressure for a significant time. One of the ways to improve the efficiency of this process is the use of energy-efficient equipment that allows intensifying heat and mass transfer. An example of such equipment is a rotary-pulsation apparatus, which are effective devices in stirring, homogenization, dispersion technologies, etc. The treatment of wheat straw in a rotary-pulsation apparatus was carried out under atmospheric pressure without external heat supply at solid/water ratios of 1:10 and 1:5 in the presence of alkali. It was determined that the treatment of the water dispersion of straw at ratio of 1:10 due to the energy dissipation during 70 minutes leads to the release of 42 % of lignin and 25.76 % of easily hydrolyzed polysaccharides. Changing the solid / water ratio from 1:10 to 1:5 leads to an increase in the yield of lignin and easily hydrolyzed polysaccharides to 58 and 33.38 %, respectively.


2015 ◽  
Vol 4 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Madhuka Roy ◽  
Krishnendu Kundu ◽  
V. R. Dahake

Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  


2017 ◽  
Vol 154 ◽  
pp. 242-254 ◽  
Author(s):  
P. Serra ◽  
J. Giuntoli ◽  
A. Agostini ◽  
M. Colauzzi ◽  
S. Amaducci

Author(s):  
Ikram ul Haq ◽  
Ali Nawaz ◽  
Badar Liaqat ◽  
Yesra Arshad ◽  
Xingli Fan ◽  
...  

Depleting supplies of fossil fuel, regular price hikes of gasoline and environmental deterioration have necessitated the search for economic and eco-benign alternatives of gasoline like lignocellulosic biomass. However, pre-treatment of such biomass results in development of some phenolic compounds which later hinder the depolymerisation of biomass by cellulases and seriously affect the cost effectiveness of the process. Dephenolification of biomass hydrolysate is well cited in literature. However, elimination of phenolic compounds from pretreated solid biomass is not well studied. The present study was aimed to optimize dephenoliphication of wheat straw using various alkalis i.e., Ca(OH)2 and NH3; acids i.e., H2O2, H2SO4, and H3PO4; combinations of NH3+ H3PO4 and H3PO4+ H2O2 at pilot scale to increase enzymatic saccharification yield. Among all the pretreatment strategies used, maximum reduction in phenolic content was observed as 66 mg Gallic Acid Equivalent/gram Dry Weight (GAE/g DW), compared to control having 210 mg GAE/g DW using 5% (v/v) combination of NH3+H3PO4. Upon subsequent saccharification of dephenoliphied substrate, the hydrolysis yield was recorded as 46.88%. Optimized conditions such as using 1%+5% concentration of NH3+ H3PO4, for 30 min at 110°C temperature reduced total phenolic content (TPC) to 48 mg GAE/g DW. This reduction in phenolic content helped cellulases to act more proficiently on the substrate and saccharification yield of 55.06% was obtained. The findings will result in less utilization of cellulases to get increased yield of saccharides by hydrolyzing wheat straw, thus, making the process economical. Furthermore, pilot scale investigations of current study will help in upgrading the novel process to industrial scale.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7591
Author(s):  
Pedro M. A. Pereira ◽  
Joana R. Bernardo ◽  
Luisa Bivar Roseiro ◽  
Francisco Gírio ◽  
Rafał M. Łukasik

Biomass pre-treatment is a key step in achieving the economic competitiveness of biomass conversion. In the present work, an imidazole pre-treatment process was performed and evaluated using wheat straw and eucalyptus residues as model feedstocks for agriculture and forest-origin biomasses, respectively. Results showed that imidazole is an efficient pre-treatment agent; however, better results were obtained for wheat straw due to the recalcitrant behavior of eucalyptus residues. The temperature had a stronger effect than time on wheat straw pre-treatment but at 160 °C and 4 h, similar results were obtained for cellulose and hemicellulose content from both biomasses (ca. 54% and 24%, respectively). Lignin content in the pre-treated solid was higher for eucalyptus residues (16% vs. 4%), as expected. Enzymatic hydrolysis, applied to both biomasses after different pre-treatments, revealed that results improved with increasing temperature/time for wheat straw. However, these conditions had no influence on the results for eucalyptus residues, with very low glucan to glucose enzymatic hydrolysis yield (93% for wheat straw vs. 40% for eucalyptus residues). Imidazole can therefore be considered as a suitable solvent for herbaceous biomass pre-treatment.


Sign in / Sign up

Export Citation Format

Share Document