Predicting chronic pain in postoperative breast cancer patients with multiple machine learning and deep learning models

2021 ◽  
Vol 74 ◽  
pp. 110423
Author(s):  
Ying Wang ◽  
Yu Zhu ◽  
Qiong Xue ◽  
Muhuo Ji ◽  
Jianhua Tong ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6013
Author(s):  
Hyun-Soo Park ◽  
Kwang-sig Lee ◽  
Bo-Kyoung Seo ◽  
Eun-Sil Kim ◽  
Kyu-Ran Cho ◽  
...  

This prospective study enrolled 147 women with invasive breast cancer who underwent low-dose breast CT (80 kVp, 25 mAs, 1.01–1.38 mSv) before treatment. From each tumor, we extracted eight perfusion parameters using the maximum slope algorithm and 36 texture parameters using the filtered histogram technique. Relationships between CT parameters and histological factors were analyzed using five machine learning algorithms. Performance was compared using the area under the receiver-operating characteristic curve (AUC) with the DeLong test. The AUCs of the machine learning models increased when using both features instead of the perfusion or texture features alone. The random forest model that integrated texture and perfusion features was the best model for prediction (AUC = 0.76). In the integrated random forest model, the AUCs for predicting human epidermal growth factor receptor 2 positivity, estrogen receptor positivity, progesterone receptor positivity, ki67 positivity, high tumor grade, and molecular subtype were 0.86, 0.76, 0.69, 0.65, 0.75, and 0.79, respectively. Entropy of pre- and postcontrast images and perfusion, time to peak, and peak enhancement intensity of hot spots are the five most important CT parameters for prediction. In conclusion, machine learning using texture and perfusion characteristics of breast cancer with low-dose CT has potential value for predicting prognostic factors and risk stratification in breast cancer patients.


2020 ◽  
Author(s):  
Kaichun Li ◽  
Qiaoyun Wang ◽  
Yanyan Lu ◽  
Xiaorong Pan ◽  
Long Liu ◽  
...  

Abstract Background The aim of this study was to confirm the role of Brachyury in breast cells and to establish and verify whether four types of machine learning models can use Brachyury expression to predict the survival of patients.Methods We conducted a retrospective review of the medical records to obtain patient information, and made the patient's paraffin tissue into tissue chips for staining analysis. We selected a total of 303 patients for research and implemented four machine learning prediction algorithms, including multivariate logistic regression model, decision tree, artificial neural network and random forest, and compared the results of these models with each other. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results.Results The chi-square test results of relevant data suggested that the expression of Brachyury protein in cancer tissues was significantly higher than that in paracancerous tissues (p=0.0335); breast cancer patients with high Brachyury expression had a worse overall survival (OS) compared with patients with low Brachyury expression. We also found that Brachyury expression was associated with ER expression (p=0.0489). Subsequently, we used four machine learning models to verify the relationship between Brachyury expression and the survival of breast cancer patients. The results showed that the decision tree model had the best performance (AUC=0.781).Conclusions Brachyury is highly expressed in breast cancer and indicates that the patient had a poor chance of survival. Compared with conventional statistical methods, decision tree model shows superior performance in predicting the survival status of breast cancer patients. This indicates that machine learning can thus be applied in a wide range of clinical studies.


2021 ◽  
Author(s):  
Kaichun Li ◽  
Qiaoyun Wang ◽  
Yanyan Lu ◽  
Xiaorong Pan ◽  
Long Liu ◽  
...  

Background The aim of this study was to confirm the role of Brachyury in breast cancer and to verify whether four types of machine learning models can use Brachyury expression to predict the survival of patients.</p>  Methods We conducted a retrospective review of the medical records to obtain patient information, and made the patient's paraffin tissue into tissue chips for staining analysis. We selected  303 patients for research and implemented four machine learning algorithms, including multivariate logistic regression model, decision tree, artificial neural network and random forest, and compared the results of these models with each other. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results.</p>  Results The chi-square test results of relevant data suggested that the expression of Brachyury protein in cancer tissues was significantly higher than that in paracancerous tissues (p=0.0335); breast cancer patients with high Brachyury expression had a worse overall survival (OS) compared with patients with low Brachyury expression. We also found that Brachyury expression was associated with ER expression (p=0.0489). Subsequently, we used four machine learning models to verify the relationship between Brachyury expression and the survival of breast cancer patients. The results showed that the decision tree model had the best performance (AUC=0.781).</p>  Conclusions Brachyury is highly expressed in breast cancer and indicates that patients had a poor prognosis. Compared with conventional statistical methods, decision tree model shows superior performance in predicting the survival status of breast cancer patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pratyusha Rakshit ◽  
Onintze Zaballa ◽  
Aritz Pérez ◽  
Elisa Gómez-Inhiesto ◽  
Maria T. Acaiturri-Ayesta ◽  
...  

AbstractThis paper presents a novel machine learning approach to perform an early prediction of the healthcare cost of breast cancer patients. The learning phase of our prediction method considers the following two steps: (1) in the first step, the patients are clustered taking into account the sequences of actions undergoing similar clinical activities and ensuring similar healthcare costs, and (2) a Markov chain is then learned for each group to describe the action-sequences of the patients in the cluster. A two step procedure is undertaken in the prediction phase: (1) first, the healthcare cost of a new patient’s treatment is estimated based on the average healthcare cost of its k-nearest neighbors in each group, and (2) finally, an aggregate measure of the healthcare cost estimated by each group is used as the final predicted cost. Experiments undertaken reveal a mean absolute percentage error as small as 6%, even when half of the clinical records of a patient is available, substantiating the early prediction capability of the proposed method. Comparative analysis substantiates the superiority of the proposed algorithm over the state-of-the-art techniques.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 518
Author(s):  
Da-Chuan Cheng ◽  
Te-Chun Hsieh ◽  
Kuo-Yang Yen ◽  
Chia-Hung Kao

This study aimed to explore efficient ways to diagnose bone metastasis early using bone scintigraphy images through negative mining, pre-training, the convolutional neural network, and deep learning. We studied 205 prostate cancer patients and 371 breast cancer patients and used bone scintigraphy data from breast cancer patients to pre-train a YOLO v4 with a false-positive reduction strategy. With the pre-trained model, transferred learning was applied to prostate cancer patients to build a model to detect and identify metastasis locations using bone scintigraphy. Ten-fold cross validation was conducted. The mean sensitivity and precision rates for bone metastasis location detection and classification (lesion-based) in the chests of prostate patients were 0.72 ± 0.04 and 0.90 ± 0.04, respectively. The mean sensitivity and specificity rates for bone metastasis classification (patient-based) in the chests of prostate patients were 0.94 ± 0.09 and 0.92 ± 0.09, respectively. The developed system has the potential to provide pre-diagnostic reports to aid in physicians’ final decisions.


2021 ◽  
Author(s):  
Athira B ◽  
Josette Jones ◽  
Sumam Mary Idicula ◽  
Anand Kulanthaivel ◽  
Enming Zhang

Abstract The widespread influence of social media impacts every aspect of life, including the healthcare sector. Although medics and health professionals are the final decision makers, the advice and recommendations obtained from fellow patients are significant. In this context, the present paper explores the topics of discussion posted by breast cancer patients and survivors on online forums. The study examines an online forum, Breastcancer.org, maps the discussion entries to several topics, and proposes a machine learning model based on a classification algorithm to characterize the topics. To explore the topics of breast cancer patients and survivors, approximately 1000 posts are selected and manually labeled with annotations. In contrast, millions of posts are available to build the labels. A semi-supervised learning technique is used to build the labels for the unlabeled data; hence, the large data are classified using a deep learning algorithm. The deep learning algorithm BiLSTM with BERT word embedding technique provided a better f1-score of 79.5%. This method is able to classify the following topics: medication reviews, clinician knowledge, various treatment options, seeking and providing support, diagnostic procedures, financial issues and implications for everyday life. What matters the most for the patients is coping with everyday living as well as seeking and providing emotional and informational support. The approach and findings show the potential of studying social media to provide insight into patients' experiences with cancer like critical health problems.


Sign in / Sign up

Export Citation Format

Share Document