Comparative Neuropathology of Major Indian Bluetongue Virus Serotypes in a Neonatal BALB/c Mouse Model

2018 ◽  
Vol 162 ◽  
pp. 18-28 ◽  
Author(s):  
A. Anjaneya ◽  
K.P. Singh ◽  
S. Cherian ◽  
M. Saminathan ◽  
R. Singh ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2208
Author(s):  
Houssam Attoui ◽  
Baptiste Monsion ◽  
Bernard Klonjkowski ◽  
Stéphan Zientara ◽  
Peter P. C. Mertens ◽  
...  

Bluetongue virus serotypes 1 to 24 are transmitted primarily by infected Culicoides midges, in which they also replicate. However, “atypical” BTV serotypes (BTV-25, -26, -27 and -28) have recently been identified that do not infect and replicate in adult Culicoides, or a Culicoides derived cell line (KC cells). These atypical viruses are transmitted horizontally by direct contact between infected and susceptible hosts (primarily small ruminants) causing only mild clinical signs, although the exact transmission mechanisms involved have yet to be determined. We used reverse genetics to generate a strain of BTV-1 (BTV-1 RGC7) which is less virulent, infecting IFNAR(−/−) mice without killing them. Reassortant viruses were also engineered, using the BTV-1 RGC7 genetic backbone, containing individual genome segments derived from BTV-26. These reassortant viruses were used to explore the genetic control of horizontal transmission (HT) in the IFNAR(−/−) mouse model. Previous studies showed that genome segments 1, 2 and 3 restrict infection of Culicoides cells, along with a minor role for segment 7. The current study demonstrates that genome segments 2, 5 and 10 of BTV-26 (coding for proteins VP2, NS1 and NS3/NS3a/NS5, respectively) are individually sufficient to promote HT.


Author(s):  
H. D. Geissinge ◽  
L.D. Rhodes

A recently discovered mouse model (‘mdx’) for muscular dystrophy in man may be of considerable interest, since the disease in ‘mdx’ mice is inherited by the same mode of inheritance (X-linked) as the human Duchenne (DMD) muscular dystrophy. Unlike DMD, which results in a situation in which the continual muscle destruction cannot keep up with abortive regenerative attempts of the musculature, and the sufferers of the disease die early, the disease in ‘mdx’ mice appears to be transient, and the mice do not die as a result of it. In fact, it has been reported that the severely damaged Tibialis anterior (TA) muscles of ‘mdx’ mice seem to display exceptionally good regenerative powers at 4-6 weeks, so much so, that these muscles are able to regenerate spontaneously up to their previous levels of physiological activity.


Author(s):  
A.D. Hyatt

Bluetongue virus (BTV) is the type species os the genus orbivirus in the family Reoviridae. The virus has a fibrillar outer coat containing two major structural proteins VP2 and VP5 which surround an icosahedral core. The core contains two major proteins VP3 and VP7 and three minor proteins VP1, VP4 and VP6. Recent evidence has indicated that the core comprises a neucleoprotein center which is surrounded by two protein layers; VP7, a major constituent of capsomeres comprises the outer and VP3 the inner layer of the core . Antibodies to VP7 are currently used in enzyme-linked immunosorbant assays and immuno-electron microscopical (JEM) tests for the detection of BTV. The tests involve the antibody recognition of VP7 on virus particles. In an attempt to understand how complete viruses can interact with antibodies to VP7 various antibody types and methodologies were utilized to determine the physical accessibility of the core to the external environment.


Author(s):  
Neil M. Foster ◽  
Ruth D. Breckon

Macrotubules have been described1 in cells infected with Umatilla virus (UMAV), an orbivirus for which bluetongue virus (BTV) is the protype. Macrotubules, often in linear array, were observed in the cytoplasm and in intimate association with viroplasms of infected cells. Macrotubules had outside and inside diameters of 20 and 15 nm and many had dark-staining centers with diameters similar to the interiors of the tubules. UMAV was 60 nm and the RNA core was 30 nm in diameter. This report describes the association of UMAV with macrotubules and two types of microtubules.


1998 ◽  
Vol 13 (11-s4) ◽  
pp. S178-S184 ◽  
Author(s):  
PETER KONTUREK ◽  
TOMASZ BRZOZOWSKI ◽  
STANISLAW KONTUREK ◽  
ELZBIETA KARCZEWSKA ◽  
ROBERT PAJDO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document