Insight and control of the chemical vapor deposition growth parameters and morphological characteristics of graphene/Mo 2 C heterostructures over liquid catalyst

2018 ◽  
Vol 495 ◽  
pp. 46-53 ◽  
Author(s):  
Stefanos Chaitoglou ◽  
Polychronis Tsipas ◽  
Thanassis Speliotis ◽  
George Kordas ◽  
Antonios Vavouliotis ◽  
...  
1999 ◽  
Vol 14 (4) ◽  
pp. 1238-1245 ◽  
Author(s):  
A. Subekti ◽  
E. M. Goldys ◽  
Melissa J. Paterson ◽  
K. Drozdowicz-Tomsia ◽  
T. L. Tansley

Metalorganic chemical vapor deposition (MOCVD) GaSb growth using trimethylgallium and trimethylantimony as a function of substrate temperature and V/III ratio was examined. These parameters were found to have a significant effect on the growth rate and surface morphology of the GaSb films. A phase diagram is used to interpret the effect of these growth parameters on the GaSb film growth. The region of single-phase growth was found to be narrow, falling between 540 and 560 °C. The optimum growth conditions for the MOCVD growth of GaSb have been determined for a TMGa flow rate of 20 sccm and a carrier gas flow of 8 l/min. The optimum substrate temperature and V/III ratio were found to be 540 °C and 0.72, respectively. In these conditions the lowest hole concentration of 5 × 1016 cm-3 and the highest room temperature mobility of 500 cm2 V-1 s-1 were achieved, accompanied by a steep, well-resolved band edge at 0.72 eV.


1999 ◽  
Vol 583 ◽  
Author(s):  
Jae-Hyun Ryou ◽  
Uttiya Chowdhury ◽  
Russell D. Dupuis ◽  
Chavva V. Reddy ◽  
Venkatesh Narayanamurti ◽  
...  

AbstractWe report InP self-assembled quantum dots embedded in In0.51Al0.49P grown by metalorganic chemical vapor deposition. Growth parameters are altered to study the InP quantum-dot growth characteristics under various growth conditions. Quantum-dot morphology is characterized using atomic-force microscopy. Also, photoluminescence studies of the light-emitting properties are performed. Direct-bandgap ternary InxAlI−xP (x=˜0.7, ˜0.85) self-assembled quantum dots are also grown and compared with InP quantum dots.


2015 ◽  
Vol 32 (6) ◽  
pp. 638
Author(s):  
Xingmin Cai ◽  
Xiaoqiang Su ◽  
Fan Ye ◽  
Huan Wang ◽  
Guangxing Liang ◽  
...  

2020 ◽  
Vol 13 (7) ◽  
pp. 075505
Author(s):  
Tomohiro Yamaguchi ◽  
Hiroki Nagai ◽  
Takanori Kiguchi ◽  
Nao Wakabayashi ◽  
Takuto Igawa ◽  
...  

1987 ◽  
Vol 102 ◽  
Author(s):  
P.-Y. Lu ◽  
L. M. Williams ◽  
C.-H. Wang ◽  
S. N. G. Chu ◽  
M. H. Ross

ABSTRACTTwo low temperature metalorganic chemical vapor deposition growth techniques, the pre-cracking method and the plasma enhanced method, will be discussed. The pre-cracking technique enables one to grow high quality epitaxial Hg1−xCdxTe on CdTe or CdZnTe substrates at temperatures around 200–250°C. HgTe-CdTe superlattices with sharp interfaces have also been fabricated. Furthermore, for the first time, we have demonstrated that ternary Hg1−xCdTe compounds and HgTe-CdTe superlattices can be successfully grown by the plasma enhanced process at temperatures as low as 135 to 150°C. Material properties such as surface morphology, infrared transmission, Hall mobility, and interface sharpness will be presented.


Author(s):  
Shu KONDO ◽  
Daiki YAMAMOTO ◽  
Kamal Prasad Prasad Sharma ◽  
Yazid Yaakob ◽  
Takahiro SAIDA ◽  
...  

Abstract We performed single-walled carbon nanotube (SWCNT) growth on flexible stainless-steel foils by applying alcohol catalytic chemical vapor deposition using an Ir catalyst with an alumina buffer layer. When the alumina thickness was 90 nm, vertically aligned SWCNTs with a thickness of 4.6 m were grown. In addition, Raman results showed that the diameters of most SWCNTs were distributed below 1.1 nm. Compared with conventional chemical vapor deposition growth where Si wafers are used as substrates, this method is more cost effective and easier to extend for mass production of small-diameter SWCNTs.


Sign in / Sign up

Export Citation Format

Share Document