Atmospheric Pressure Chemical Vapor Deposition Growth Window for Undoped Gallium Antimonide

1999 ◽  
Vol 14 (4) ◽  
pp. 1238-1245 ◽  
Author(s):  
A. Subekti ◽  
E. M. Goldys ◽  
Melissa J. Paterson ◽  
K. Drozdowicz-Tomsia ◽  
T. L. Tansley

Metalorganic chemical vapor deposition (MOCVD) GaSb growth using trimethylgallium and trimethylantimony as a function of substrate temperature and V/III ratio was examined. These parameters were found to have a significant effect on the growth rate and surface morphology of the GaSb films. A phase diagram is used to interpret the effect of these growth parameters on the GaSb film growth. The region of single-phase growth was found to be narrow, falling between 540 and 560 °C. The optimum growth conditions for the MOCVD growth of GaSb have been determined for a TMGa flow rate of 20 sccm and a carrier gas flow of 8 l/min. The optimum substrate temperature and V/III ratio were found to be 540 °C and 0.72, respectively. In these conditions the lowest hole concentration of 5 × 1016 cm-3 and the highest room temperature mobility of 500 cm2 V-1 s-1 were achieved, accompanied by a steep, well-resolved band edge at 0.72 eV.

2007 ◽  
Vol 22 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
Y. Morikawa ◽  
M. Hirai ◽  
A. Ohi ◽  
M. Kusaka ◽  
M. Iwami

We have studied the heteroepitaxial growth of 3C–SiC film on an Si(100) substrate by plasma chemical vapor deposition using monomethylsilane, a single-molecule gas containing both Si and C atoms. We have tried to introduce an interval process, in which we decrease the substrate temperature for a few minutes at a suitable stage of film growth. It was expected that, during the interval process, stabilization such as desorption of nonreacted precursors and lateral diffusion of species produced at the initial stage of film growth would occur. From the results, it appears that the interval process using a substrate temperature of 800 °C effectively suppresses polycrystallization of 3C–SiC growth on the Si(100) surface


2021 ◽  
Vol 3 ◽  
Author(s):  
Larionette P. L. Mawlong ◽  
Ravi K. Biroju ◽  
P. K. Giri

We report on the growth of an ordered array of MoS2 nanodots (lateral sizes in the range of ∼100–250 nm) by a thermal chemical vapor deposition (CVD) method directly onto SiO2 substrates at a relatively low substrate temperature (510–560°C). The temperature-dependent growth and evolution of MoS2 nanodots and the local environment of sulfur-induced structural defects and impurities were systematically investigated by field emission scanning electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) techniques. At the substrate temperature of 560°C, we observed mostly few-layer MoS2, and at 510°C, multilayer MoS2 growth, as confirmed from the Raman line shape analysis. With reduced substrate temperature, the density of MoS2 nanodots decreases, and layer thickness increases. Raman studies show characteristic Raman modes of the crystalline MoS2 layer, along with two new Raman modes centered at ∼346 and ∼361 cm−1, which are associated with MoO2 and MoO3 phases, respectively. Room temperature photoluminescence (PL) studies revealed strong visible PL from MoS2 layers, which is strongly blue-shifted from the bulk MoS2 flakes. The strong visible emission centered at ∼ 658 nm signifies a free excitonic transition in the direct gap of single-layer MoS2. Position-dependent PL profiles show excellent uniformity of the MoS2 layers for samples grown at 540 and 560°C. These results are significant for the low-temperature CVD growth of a few-layer MoS2 dots with direct bandgap photoluminescence on a flexible substrate.


Author(s):  
Zhigang Xu ◽  
Jag Sankar ◽  
Qiuming Wei ◽  
Jim Lua ◽  
Sergey Yamolenko ◽  
...  

Thin film of YSZ electrolyte is highly desired to reduce the electrical resistance in SOFCs. YSZ thin Films have been successfully produced using liquid fuel combustion chemical vapor deposition (CCVD) technique. Nucleation of the YSZ particles were investigated based on two processing parameters, i.e., substrate temperature and total-metal-concentration in the liquid fuel. An optimum substrate temperature was found for highest the nucleation density. The nucleation density was increased with the total-metal-concentration. Microstructure evolution of the YSZ particles in the early stage in film growth was also studied. It was found that the particle growth rate was linear with processing time, and the particle orientation was varying with the time in the early stage of the film processing. To enhance the film growth rate, the effect of thermophoresis was studied. By increase the temperature gradient towards substrate, the effect of thermophoresis was enhanced and the film growth is also increased.


2005 ◽  
Vol 892 ◽  
Author(s):  
William E. Fenwick ◽  
Vincent T. Woods ◽  
Ming Pan ◽  
Nola Li ◽  
Matthew H. Kane ◽  
...  

AbstractThin films of ZnO were grown by metal organic chemical vapor deposition (MOCVD) in a vertical injection rotating disk reactor (RDR) system on sapphire substrates. Kinetics of ZnO growth by MOCVD were studied and an optimal growth window for a RDR tool was determined. Experimental growth conditions were chosen based on calculations of Reynolds Number (Re) and mixed convection parameter in order to select a growth window with stable gas flow and uniform heat transfer. Growth parameters were systemically varied within this window to determine the optimal growth conditions for this MOCVD tool and to study how these parameters affect film growth and quality. Properties of ZnNiO films grown by MOCVD were also studied to determine the effects of Ni incorporation on structural, optical, and magnetic properties.


1999 ◽  
Vol 583 ◽  
Author(s):  
Jae-Hyun Ryou ◽  
Uttiya Chowdhury ◽  
Russell D. Dupuis ◽  
Chavva V. Reddy ◽  
Venkatesh Narayanamurti ◽  
...  

AbstractWe report InP self-assembled quantum dots embedded in In0.51Al0.49P grown by metalorganic chemical vapor deposition. Growth parameters are altered to study the InP quantum-dot growth characteristics under various growth conditions. Quantum-dot morphology is characterized using atomic-force microscopy. Also, photoluminescence studies of the light-emitting properties are performed. Direct-bandgap ternary InxAlI−xP (x=˜0.7, ˜0.85) self-assembled quantum dots are also grown and compared with InP quantum dots.


2007 ◽  
Vol 22 (4) ◽  
pp. 1024-1028 ◽  
Author(s):  
Bin Xia ◽  
Matthew L. Fisher ◽  
Harold Stemper ◽  
Ashutosh Misra

Hafnium silicon oxynitride (HfSiON) films were deposited on 200-mm silicon substrates by low-pressure chemical vapor deposition (LPCVD) from a combination of trisilylamine (TSA) and tetrakis(diethylamido)hafnium(IV) (TDEAH) in the temperature range 450 to 575 °C. A highly volatile and carbon-free silicon precursor TSA was used to deposit HfSiON films for the first time. HfSiON films were deposited in a single step with no need of a post-treatment process for nitrogen incorporation. The film composition was tuned in a wide compositional range, and high growth rates were achieved. NH3 was found to have profound effects on film growth rate, metal ratio (Si% or Hf%), nitrogen incorporation, and carbon residue in the films.


1996 ◽  
Vol 11 (12) ◽  
pp. 2957-2960 ◽  
Author(s):  
Yan Chen ◽  
Qijin Chen ◽  
Zhangda Lin

A new designed reaction chamber with new relative distribution of filament and substrates has been adopted in order to increase the deposition area of diamond films and thus increase the deposition efficiency in conventional hot filament chemical vapor deposition (HFCVD) systems. The relatively small reaction chamber was cuboid shaped (50 × 25 × 25 mm3) and composed of molybdenum wafers. It was established in the vacuum chamber. A tungsten filament was hung up vertically in the center of the small chamber and parallel to the gas flow path. At the four inner sides of the reaction chamber, four Si(100) substrates (30 × 10 × 0.5 mm3) were installed to grow diamond films. The deposition results indicate that uniform diamond films can be obtained on the four substrates, and the film growth rate is the same at both ends of the substrates. The diamond film growth rate was about 1−2 μm/h, which is similar to those of the conventional HFCVD method. Thus, the deposition area and efficiency can be increased four times in the case without the filament number, gas flow rate, and power consumption.


Sign in / Sign up

Export Citation Format

Share Document