Novel coupled modular steel structure and seismic tests on high-performance interconnection

Author(s):  
Hao Wang ◽  
Xin Zhao ◽  
Guowei Ma
Author(s):  
Haigen Cheng ◽  
Cong Hu ◽  
Yong Jiang

AbstractThe steel structure under the action of alternating load for a long time is prone to fatigue failure and affects the safety of the engineering structure. For steel structures in complex environments such as corrosive media and fires, the remaining fatigue life is more difficult to predict theoretically. To this end, the article carried out fatigue tests on Q420qD high-performance steel cross joints under three different working conditions, established a 95% survival rate $$S{ - }N$$ S - N curves, and analyzed the effects of corrosive media and high fire temperatures on its fatigue performance. And refer to the current specifications to evaluate its fatigue performance. The results show that the fatigue performance of the cross joint connection is reduced under the influence of corrosive medium, and the fatigue performance of the cross joint connection is improved under the high temperature of fire. When the number of cycles is more than 200,000 times, the design curves of EN code, GBJ code, and GB code can better predict the fatigue life of cross joints without treatment, only corrosion treatment, and corrosion and fire treatment, and all have sufficient safety reserve.


2018 ◽  
Vol 763 ◽  
pp. 884-891
Author(s):  
Ryohei Narui ◽  
Kazuhisa Koyano ◽  
Mitsumasa Midorikawa ◽  
Tadao Nakagomi ◽  
Mamoru Iwata

The authors have continuously studied buckling-restrained braces using steel mortar planks (BRBSM). The performance of energy absorption and fatigue against cyclic loading has been evaluated. Although past studies have clarified the structural performance of BRBSM as single member, it is necessary to study not only the performance of BRBSM as single member but also the performance of BRBSM installed in a building structure. In this paper, a frame model of mid-rise steel structure with BRBSM subjected to earthquake motions with various characteristics is analyzed. Comparing the results of the analysis and the past tests, the seismic behavior of a structure is discussed. Especially, the seismic performance of BRBSM installed in the building structure is evaluated. In addition, the seismic performance of two types of BRBSM; basic and developed high-performance types, is compared and evaluated about cumulative plastic strain energy ratio and cumulative fatigue. As a result, the performance capacities of the both types of BRBSM exceed the required values of BRBSM under severe earthquake motions about cumulative plastic strain energy ratio and cumulative fatigue. The basic-type BRBSM has the fatigue capacity against 2 to 5 times severe earthquake motions. The required values of high-performance-type BRBSM are about a half of accumulated fatigue capacity compared with the basic-type one. The high-performance-type BRBSM is applicable against quite many cyclic loadings of low strain amplitude, and able to be used for long-term service.


2018 ◽  
Vol 1 (1) ◽  
pp. 19
Author(s):  
Bin Shu ◽  
Erbao Li ◽  
Xianji Meng

As the national buildings in each climate zone and passive low energy consumption building demonstration projects expand, there has been a wave of innovation across the construction industry. China is also becoming a hot zone for energy-efficient and high-performance passive buildings. Along with the traditional passive building structure, steel structure passive construction, assembled PC structure passive construction such as the emergence of various types of passive construction, as well as a variety of new building materials, doors and Windows, and air conditioning air equipment, put forward a new challenge for building electrical engineering design personnel and requirements.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8199
Author(s):  
Namhoon Ha ◽  
Han-Seung Lee ◽  
Songjun Lee

Structural health monitoring (SHM) can be more efficient with the application of a wireless sensor network (WSN). However, the hardware that makes up this system should have sufficient performance to sample the data collected from the sensor in real-time situations. High-performance hardware can be used for this purpose, but is not suitable in this application because of its relatively high power consumption, high cost, large size, and so on. In this paper, an optimal remote monitoring system platform for SHM is proposed based on pulsed eddy current (PEC) that is utilized for measuring the corrosion of a steel-framed construction. A circuit to delay the PEC response based on the resistance–inductance–capacitance (RLC) combination was designed for data sampling to utilize the conventional hardware of WSN for SHM, and this approach was verified by simulations and experiments. Especially, the importance of configuring sensing modules and the WSN for remote monitoring were studied, and the PEC responses caused by the corrosion of a specimen made with steel were able to be sampled remotely using the proposed system. Therefore, we present a remote SHM system platform for diagnosing the corrosion condition of a building with a steel structure, and proving its viability with experiments.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012012
Author(s):  
Zhidong Yao ◽  
Jiaqi Lu ◽  
Yesen Liu ◽  
Gang Wang

Abstract With the development of computer technology, the technology based on computer machine learning plays an important role in various fields. Using drones for collecting image data and using machine learning to analyze the collected image data have become the current general method of intelligent detection technology. As the main machine learning method, deep learning is commonly used in image analysis, but it requires many high-quality training samples and high-performance embedded system. In the engineering quality and safety detection with few training samples, the detection effect of this method is not satisfactory. To solve this problem, computer vision and machine learning technology are introduced into image analysis of bolt, based on the analysis and mining of historical image samples, the recognition and judgment of new collected images can be realized by matching the newly collected image samples and historical samples. Taking the bolt on a steel structure bridge as an example, this method is used to recognize the bolt appearance image collected by UAV. The results show that the method can effectively identify the appearance state of bolts, with fast calculation speed and high recognition accuracy.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Sign in / Sign up

Export Citation Format

Share Document