In vivo drug delivery efficiency of albumin-encapsulated liposomes as hydrophobic drug carriers

2018 ◽  
Vol 47 ◽  
pp. 62-66 ◽  
Author(s):  
Yuko Okamoto ◽  
Kazuaki Taguchi ◽  
Mina Sakuragi ◽  
Shuhei Imoto ◽  
Keishi Yamasaki ◽  
...  
2016 ◽  
Vol 4 (48) ◽  
pp. 7845-7851 ◽  
Author(s):  
Junpeng Shi ◽  
Meng Sun ◽  
Xia Sun ◽  
Hongwu Zhang

Near-infrared persistent luminescence hollow mesoporous nanospheres have been synthesized via a template method. These nanospheres can be used as large capacity drug carriers and realize super long-term and high sensitivity tracking of drug delivery in deep tissue.


2006 ◽  
Vol 6 (9) ◽  
pp. 2712-2735 ◽  
Author(s):  
J. M. Koziara ◽  
P. R. Lockman ◽  
D. D. Allen ◽  
R. J. Mumper

The present report encompasses a thorough review of drug delivery to the brain with a particular focus on using drug carriers such as liposomes and nanoparticles. Challenges in brain drug delivery arise from the presence of one of the strictest barriers in vivo—the blood-brain barrier (BBB). This barrier exists at the level of endothelial cells of brain vasculature and its role is to maintain brain homeostasis. To better understand the principles of brain drug delivery, relevant knowledge of the blood-brain barrier anatomy and physiology is briefly reviewed. Several approaches to overcome the BBB have been reviewed including the use of carrier systems. In addition, strategies to enhance brain drug delivery by specific brain targeting are discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jonathan Rios-Doria ◽  
Adam Carie ◽  
Tara Costich ◽  
Brian Burke ◽  
Habib Skaff ◽  
...  

Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30–80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Zhongjian Fang ◽  
Houchao Xu ◽  
Xiangjun Ji ◽  
Congbiao Liu ◽  
Kai Wang ◽  
...  

The past two decades have witnessed the great growth of the development of novel drug carriers. However, the releasing dynamics of drug from drug carriers in vivo and the interactions between cells and drug carriers remain unclear. In this paper, liposomes were prepared to encapsulate D-luciferin, which was the substrate of luciferase and served as a model drug. Based on the theoretical calculation of active loading, methods of preparation for liposomes were optimized. Only when D-luciferin was released from liposomes or taken in by the cells could bioluminescence be produced under the catalysis of luciferase. Models of multicellular tumor spheroid (MCTS) were built with 4T1-luc cells that expressed luciferase stably. The kinetic processes of uptake and distribution of free drugs and liposomal drugs were determined with models of cell suspension, monolayer cells, MCTS, and tumor-bearing nude mice. The technology platform has been demonstrated to be effective for the study of the distribution and kinetic profiles of various liposomes as drug delivery systems.


2018 ◽  
Author(s):  
Natalya Rapoport ◽  
Allison Payne ◽  
Christopher Dillon ◽  
Jill Shea ◽  
Courtney Scaife

It is still not known which mode of ultrasound action - thermal or mechanical - plays the predominant role in ultrasound mediated drug delivery. This project will combine results from two powerful imaging modalities, MRI and RFP imaging, to better understand and quantify the major effects. Several experimental variables will be tested in vivo using RFP-transfected pancreatic cancer MiaPaCa2 subcutaneous tumors grown in nude mice, providing information to better understand the mechanisms involved in ultrasound-mediated drug delivery.


Author(s):  
Sunandita Sarker ◽  
Ryan Jones ◽  
Gabriel Chow ◽  
Benjamin Terry

Abstract Despite being the preferred route of drug administration, the oral formulation of biological drugs is limited due to its intrinsic instability, low permeability, and physical, chemical and immunological barriers. Various innovative swallowable technologies such as drug-loaded, dissolvable microneedles, mucoadhesive patches, and various microdevices present unique drug-carrying capabilities. The current work presents a novel soft stent platform that can facilitate contact between the small intestine tissue and drug carriers to enhance drug absorption and increase residence time. This study aims to prove the concept of this novel platform and determine if the soft stent will retain orally to the ileocecal valve longer than a capsule-shaped bolus. Benchtop studies on an intestinal simulator showed successful retention of the soft stent compared to a control capsule. In vivo studies in pig models also showed that the soft stent was retained longer than the control capsule. Overall, this study shows promise that this novel platform could be used for oral drug delivery of biologics.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1571 ◽  
Author(s):  
Fanchao Meng ◽  
Yating Sun ◽  
Robert J. Lee ◽  
Guiyuan Wang ◽  
Xiaolong Zheng ◽  
...  

Microfluidic technology (MF) has improved the formulation of nanoparticles (NPs) by achieving uniform particle size distribution, controllable particle size, and consistency. Moreover, because liquid mixing can be precisely controlled in the pores of the microfluidic chip, maintaining high mixing efficiency, MF exerts higher of NP encapsulation efficiency (EE) than conventional methods. MF-NPs-cabazitaxel (CTX) particles (MF-NPs-CTX) were first prepared by encapsulating CTX according to MF. Folate (FA)- Polyethylene glycol (PEG)-NPs-CTX particles (FA-PEG-NPs-CTX) were formulated by connecting FA to MF-NPs-CTX to endow NPs with targeted delivery capability. Accordingly, the mean particle size of FA-PEG-NPs-CTX increased by approximately 25 nm, as compared with MF-NPs-CTX. Upon morphological observation of FA-PEG-NPs-CTX and MF-NPs-CTX by transmission electron microscopy (TEM), all NPs were spherical and particle size distribution was uniform. Moreover, the increased delivery efficiency of CTX in vitro and its strong tumor inhibition in vivo indicated that FA-PEG-NPs-CTX had a powerful tumor-suppressive effect both in vitro and in vivo. In vivo imaging and pharmacokinetic data confirmed that FA-PEG-NPs-CTX had good drug delivery efficiency. Taken together, FA-PEG-NPs-CTX particles prepared using MF showed high efficient and targeted drug delivery and may have a considerable driving effect on the clinical application of targeting albumin NPs.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1216
Author(s):  
Shrishti Singh ◽  
Jeffrey Moran

For effective treatment of diseases such as cancer or fibrosis, it is essential to deliver therapeutic agents such as drugs to the diseased tissue, but these diseased sites are surrounded by a dense network of fibers, cells, and proteins known as the extracellular matrix (ECM). The ECM forms a barrier between the diseased cells and blood circulation, the main route of administration of most drug delivery nanoparticles. Hence, a stiff ECM impedes drug delivery by limiting the transport of drugs to the diseased tissue. The use of self-propelled particles (SPPs) that can move in a directional manner with the application of physical or chemical forces can help in increasing the drug delivery efficiency. Here, we provide a comprehensive look at the current ECM models in use to mimic the in vivo diseased states, the different types of SPPs that have been experimentally tested in these models, and suggest directions for future research toward clinical translation of SPPs in diverse biomedical settings.


2021 ◽  
Author(s):  
Yi Li ◽  
Chunjing Guo ◽  
Qiang Chen ◽  
Yanguo Su ◽  
Huimin Guo ◽  
...  

Abstract Background Pneumonia is a life-threatening respiratory disease without effective treatment due to uncontrolled inflammation of the lung tissue. Suppression of cytokine storms may be one of the keys to saving the lives of patients with severe pneumonia. Given the fragile delivery efficiency of drugs in vivo, novel delivery platforms to address these issues are necessary. Results Here, we developed a biomimetic nanocarrier (MNPs) with macrophage membranes coated ROS-responsive Platycodon grandiflorum polysaccharides nanoparticles (PNPs) for targeted delivery of curcumin (MNPs@Cur) to inflamed lungs and treat inflammation by calming cytokine storms. In the study, we could clearly find that MNPs@Cur significantly attenuated inflammation and cytokine storm syndrome in acute lung injury (ALI) mice by neutralizing multiple proinfammatory cytokines. Interestingly, we found that the PNPs also had potent pulmonary targeting compared to other polysaccharide carriers, which probably means that PNPs have inherited the natural targeting ability in the medicinal guide theory of Traditional Chinese Medicine (TCM). Conclusion The results demonstrated that the developed drug delivery system may serve as an effective and safe nanoplatform for the treatment of pneumonia, as well as provide experimental scientific basis for the medicinal guide theory of TCM and its clinical application.


Nanoscale ◽  
2021 ◽  
Author(s):  
Qinglin Sheng ◽  
Ting Li ◽  
Xian Tang ◽  
Wei Zhao ◽  
Rong Guo ◽  
...  

Facing the barriers in each step of the in vivo delivery cascade, the low drug delivery efficiency remains a thorny problem in tumor therapy. Although recently the nanofibril drug delivery...


Sign in / Sign up

Export Citation Format

Share Document