scholarly journals Autonomously Propelled Colloids for Penetration and Payload Delivery in Complex Extracellular Matrices

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1216
Author(s):  
Shrishti Singh ◽  
Jeffrey Moran

For effective treatment of diseases such as cancer or fibrosis, it is essential to deliver therapeutic agents such as drugs to the diseased tissue, but these diseased sites are surrounded by a dense network of fibers, cells, and proteins known as the extracellular matrix (ECM). The ECM forms a barrier between the diseased cells and blood circulation, the main route of administration of most drug delivery nanoparticles. Hence, a stiff ECM impedes drug delivery by limiting the transport of drugs to the diseased tissue. The use of self-propelled particles (SPPs) that can move in a directional manner with the application of physical or chemical forces can help in increasing the drug delivery efficiency. Here, we provide a comprehensive look at the current ECM models in use to mimic the in vivo diseased states, the different types of SPPs that have been experimentally tested in these models, and suggest directions for future research toward clinical translation of SPPs in diverse biomedical settings.

2018 ◽  
Vol 47 ◽  
pp. 62-66 ◽  
Author(s):  
Yuko Okamoto ◽  
Kazuaki Taguchi ◽  
Mina Sakuragi ◽  
Shuhei Imoto ◽  
Keishi Yamasaki ◽  
...  

Nanomedicine ◽  
2021 ◽  
Author(s):  
Xuandi Lai ◽  
Xinran Geng ◽  
Mengqing Li ◽  
Mengxiong Tang ◽  
Qiong Liu ◽  
...  

Aim: This work aims to develop an injectable nano-drug delivery system to overcome tumor multidrug resistance (MDR). Methods: A drug delivery nanoplatform based on PEGylated PLGA with glutathione (GSH) responsivity was constructed for dual delivery of doxorubicin and curcumin (termed DCNP), and its MDR reversal efficiency was studied in vitro and in vivo. Results: The DCNPs exhibited a rapid drug release profile under high GSH concentration and could enhance the cellular uptake and cytotoxicity of doxorubicin to MDR cancer cells. Moreover, the DCNPs showed better biocompatibility, longer blood circulation and enhanced antitumor efficiency compared with free drugs. Conclusion: The GSH-responsive nanocarrier is believed to be a promising candidate for overcoming tumor MDR.


Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 650-658 ◽  
Author(s):  
Silvia Muro ◽  
Christine Gajewski ◽  
Michael Koval ◽  
Vladimir R. Muzykantov

AbstractIntercellular adhesion molecule-1 (ICAM-1) is a target for drug delivery to endothelial cells (ECs), which internalize multivalent anti-ICAM nanocarriers (anti-ICAM/NCs) within 15 to 30 minutes. The concomitant ICAM-1 disappearance from the EC surface transiently inhibited subsequent binding and uptake of anti-ICAM/NCs. Within 1 hour, internalized ICAM-1 diverged from anti-ICAM/NCs into prelysosomal vesicles, resurfaced, and enabled uptake of a subsequent anti-ICAM/NC dose. Thus, internalized ICAM-1 was able to recycle back to the plasma membrane. In vivo pulmonary targeting of a second anti-ICAM/NC dose injected 15 minutes after the first dose was decreased by 50% but recovered between 30 minutes and 2.5 hours, comparable to cultured ECs. Anti-ICAM/NCs affected neither EC viability nor fluid-phase endocytosis and traffic to lysosomes. However, lysosomal trafficking of the second dose of anti-ICAM/NCs was decelerated at least 2-fold versus the first dose; hence the major fraction of anti-ICAM/NCs resided in prelysosomal vesicles for at least 5 hours without degradation. Two successive doses of anti-ICAM/NC/catalase protected ECs against H2O2 for at least 8 hours versus 2 hours afforded by a single dose, suggesting that recurrent targeting to ICAM-1 affords longer effects. ICAM-1 recycling and inhibited lysosomal traffic/degradation of subsequent doses may help to prolong activity of therapeutic agents delivered into ECs by anti-ICAM/NCs.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1571 ◽  
Author(s):  
Fanchao Meng ◽  
Yating Sun ◽  
Robert J. Lee ◽  
Guiyuan Wang ◽  
Xiaolong Zheng ◽  
...  

Microfluidic technology (MF) has improved the formulation of nanoparticles (NPs) by achieving uniform particle size distribution, controllable particle size, and consistency. Moreover, because liquid mixing can be precisely controlled in the pores of the microfluidic chip, maintaining high mixing efficiency, MF exerts higher of NP encapsulation efficiency (EE) than conventional methods. MF-NPs-cabazitaxel (CTX) particles (MF-NPs-CTX) were first prepared by encapsulating CTX according to MF. Folate (FA)- Polyethylene glycol (PEG)-NPs-CTX particles (FA-PEG-NPs-CTX) were formulated by connecting FA to MF-NPs-CTX to endow NPs with targeted delivery capability. Accordingly, the mean particle size of FA-PEG-NPs-CTX increased by approximately 25 nm, as compared with MF-NPs-CTX. Upon morphological observation of FA-PEG-NPs-CTX and MF-NPs-CTX by transmission electron microscopy (TEM), all NPs were spherical and particle size distribution was uniform. Moreover, the increased delivery efficiency of CTX in vitro and its strong tumor inhibition in vivo indicated that FA-PEG-NPs-CTX had a powerful tumor-suppressive effect both in vitro and in vivo. In vivo imaging and pharmacokinetic data confirmed that FA-PEG-NPs-CTX had good drug delivery efficiency. Taken together, FA-PEG-NPs-CTX particles prepared using MF showed high efficient and targeted drug delivery and may have a considerable driving effect on the clinical application of targeting albumin NPs.


2021 ◽  
Author(s):  
Yi Li ◽  
Chunjing Guo ◽  
Qiang Chen ◽  
Yanguo Su ◽  
Huimin Guo ◽  
...  

Abstract Background Pneumonia is a life-threatening respiratory disease without effective treatment due to uncontrolled inflammation of the lung tissue. Suppression of cytokine storms may be one of the keys to saving the lives of patients with severe pneumonia. Given the fragile delivery efficiency of drugs in vivo, novel delivery platforms to address these issues are necessary. Results Here, we developed a biomimetic nanocarrier (MNPs) with macrophage membranes coated ROS-responsive Platycodon grandiflorum polysaccharides nanoparticles (PNPs) for targeted delivery of curcumin (MNPs@Cur) to inflamed lungs and treat inflammation by calming cytokine storms. In the study, we could clearly find that MNPs@Cur significantly attenuated inflammation and cytokine storm syndrome in acute lung injury (ALI) mice by neutralizing multiple proinfammatory cytokines. Interestingly, we found that the PNPs also had potent pulmonary targeting compared to other polysaccharide carriers, which probably means that PNPs have inherited the natural targeting ability in the medicinal guide theory of Traditional Chinese Medicine (TCM). Conclusion The results demonstrated that the developed drug delivery system may serve as an effective and safe nanoplatform for the treatment of pneumonia, as well as provide experimental scientific basis for the medicinal guide theory of TCM and its clinical application.


Nanoscale ◽  
2021 ◽  
Author(s):  
Qinglin Sheng ◽  
Ting Li ◽  
Xian Tang ◽  
Wei Zhao ◽  
Rong Guo ◽  
...  

Facing the barriers in each step of the in vivo delivery cascade, the low drug delivery efficiency remains a thorny problem in tumor therapy. Although recently the nanofibril drug delivery...


2013 ◽  
Vol 2 (4) ◽  
pp. 381-394 ◽  
Author(s):  
Marc Schwarz ◽  
Arnd Dörfler ◽  
Tobias Engelhorn ◽  
Tobias Struffert ◽  
Rainer Tietze ◽  
...  

AbstractThe use of nanoparticles in tumor imaging, molecular imaging, and drug delivery has significantly expanded in the last few years. The relatively new field of “theranostics” combines their capacity for drug delivery with their potential as contrast agents. Depending on the imaging modality used, several types of nanoparticles are available, such as gold for optical imaging or superparamagnetic iron oxide for magnetic resonance imaging. This review will give a short overview of the different types of nanoparticles as well as their development and potential application in recent years. Furthermore, it describes the research on classic imaging modalities as well as on new techniques to image nanoparticles in vivo and focuses on magnetic-based imaging modalities.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4330
Author(s):  
Ngonidzashe Ruwizhi ◽  
Blessing Atim Aderibigbe

Several researchers have reported the use of cholesterol-based carriers in drug delivery. The presence of cholesterol in cell membranes and its wide distribution in the body has led to it being used in preparing carriers for the delivery of a variety of therapeutic agents such as anticancer, antimalarials and antivirals. These cholesterol-based carriers were designed as micelles, nanoparticles, copolymers, liposomes, etc. and their routes of administration include oral, intravenous and transdermal. The biocompatibility, good bioavailability and biological activity of cholesterol-based carriers make them potent prodrugs. Several in vitro and in vivo studies revealed cholesterol-based carriers potentials in delivering bioactive agents. In this manuscript, a critical review of the efficacy of cholesterol-based carriers is reported.


2020 ◽  
Vol 5 (2) ◽  
pp. 218-234 ◽  
Author(s):  
Hongxia Li ◽  
Xu Yan ◽  
Deshuai Kong ◽  
Rui Jin ◽  
Chunyan Sun ◽  
...  

This review summarized recent advances in CDs-based bioimaging including in vitro imaging in delivering CDs into different types of cells and in vivo applications in distribution and uptake of CDs, imaging-guild drug delivery and tumor therapeutics.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Fan Li ◽  
Yan Liang ◽  
Miaochen Wang ◽  
Xing Xu ◽  
Fen Zhao ◽  
...  

AbstractSynergistic chemo-photodynamic therapy has garnered attention in the field of cancer treatment. Here, a pH cascade-responsive micellar nanoplatform with nucleus-targeted ability, for effective synergistic chemo-photodynamic cancer treatment, was fabricated. In this micellar nanoplatform, 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (Por), a photodynamic therapy (PDT) agent was utilized for carrying the novel anticancer drug GNA002 to construct a hydrophobic core, and cyclic RGD peptide (cRGD)-modified polyethylene glycol (PEG) (cRGD-PEG) connected the cell-penetrating peptide hexaarginine (R6) through a pH-responsive hydrazone bond (cRGD-PEG-N = CH-R6) to serve as a hydrophilic shell for increasing blood circulation time. After passively accumulating in tumor sites, the self-assembled GNA002-loaded nanoparticles were actively internalized into cancer cells via the cRGD ligands. Once phagocytosed by lysosomes, the acidity-triggered detachment of the cRGD-PEG shell led to the formation of R6-coated secondary nanoparticles and subsequent R6-mediated nucleus-targeted drug delivery. Combined with GNA002-induced nucleus-specific chemotherapy, reactive oxygen species produced by Por under 532-nm laser irradiation achieved a potent synergistic chemo-photodynamic cancer treatment. Moreover, our in vitro and in vivo anticancer investigations revealed high cancer-suppression efficacy of this ideal multifunctional nanoplatform, indicating that it could be a promising candidate for synergistic anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document