Bacillus subtilis Strain PB6 Demonstrates Growth Inhibition Toward Equine-Specific Bacterial Pathogens

2017 ◽  
Vol 58 ◽  
pp. 84-88
Author(s):  
Meredith L. Burke ◽  
Sally A. Moore
2019 ◽  
Vol 34 (2) ◽  
pp. 97-102
Author(s):  
Ivana Potocnik ◽  
Svetlana Milijasevic-Marcic ◽  
Olja Stanojevic ◽  
Tanja Beric ◽  
Slavisa Stankovic ◽  
...  

The study aimed to isolate potential biocontrol agents from mushroom substrate that could serve as an alternative to toxic chemicals commonly used for disease control in mushroom production. The antagonistic potential of ten native Bacillus subtilis strains against the causal agents of green mould disease of oyster mushroom, Trichoderma pleuroti and Trichoderma pleuroticola, was evaluated. The antagonistic potential of Bacillus spp. strains was quantified in vitro based on dual cultivation with the pathogen. Growth inhibition of T. pleuroti ranged from 54.44% to 62.22% and no significant differences in antagonistic activity were found between the tested B. subtilis strains. Inhibition of T. pleuroticola was slightly higher, ranging from 55.56% to 69.62% and B. subtilis strain B-358 induced the highest growth inhibition. This research confirmed mushroom substrate to be a good source of antagonistic microorganisms with potentials for use in biological control of green mould in oyster mushroom production.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Hussein A Kadhum ◽  
Thualfakar H Hasan2

The study involved the selection of two isolates from Bacillus subtilis to investigate their inhibitory activity against some bacterial pathogens. B sub-bacteria were found to have a broad spectrum against test bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. They were about 23-30 mm and less against Klebsiella sp. The sensitivity of some antibodies was tested on the test samples. The results showed that the inhibitory ability of bacterial growth in the test samples using B. subtilis extract was more effective than the antibiotics used.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel R. Reuß ◽  
Andrea Thürmer ◽  
Rolf Daniel ◽  
Wim J. Quax ◽  
Jörg Stülke

Bacillus subtilis ∆6 is a genome-reduced strain that was cured from six prophages and AT-rich islands. This strain is of great interest for biotechnological applications. Here, we announce the full-genome sequence of this strain. Interestingly, the conjugative element ICE Bs 1 has most likely undergone self-excision in B. subtilis ∆6.


1979 ◽  
Vol 179 (2) ◽  
pp. 333-339 ◽  
Author(s):  
A Y Strongin ◽  
D I Gorodetsky ◽  
I A Kuznetsova ◽  
V V Yanonis ◽  
Z T Abramov ◽  
...  

Intracellular serine proteinase was isolated from sporulating cells of Bacillus subtilis Marburg 168 by gramicidin S-Sepharose 4B affinity chromatography. The enzymological characteristics, the amino acid composition and the 19 residues of the N-terminal sequence of the enzyme are reported. The isolated proteinase was closely related to, but not completely identical with, the intracellular serine proteinase of B. subtilis A-50. The divergence between these two intracellular enzymes was less than that between the corresponding extracellular serine proteinases (subtilisins) of types Carlsberg and BPN′!, produced by these bacterial strains. This may be connected with the more strict selection constraints imposed in intracellular enzymes during evolution.


2017 ◽  
Vol 12 (1) ◽  
pp. 255-263 ◽  
Author(s):  
Kanjana Thumanu ◽  
Darawadee Wongchalee ◽  
Mathukorn Sompong ◽  
Piyaporn Phansak ◽  
Toan Le Thanh ◽  
...  

Microbiology ◽  
2008 ◽  
Vol 154 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Kazuo Kobayashi ◽  
Ritsuko Kuwana ◽  
Hiromu Takamatsu

Author(s):  
Meichun Chen ◽  
Meixia Zheng ◽  
Yanping Chen ◽  
Rongfeng Xiao ◽  
Xuefang Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document