The tannins from Punica granatum L, natural regulator of TGF-β1/Smad signaling activity improves nephrectomy and adriamycin induced focal segmental glomerulosclerosis in vivo

2019 ◽  
Vol 57 ◽  
pp. 361-372 ◽  
Author(s):  
Qiaoling Li ◽  
Jie Tu ◽  
Benhong Zhou
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryosuke Nakamura ◽  
Nao Hiwatashi ◽  
Renjie Bing ◽  
Carina P. Doyle ◽  
Ryan C. Branski

AbstractVocal fold (VF) fibrosis is a major cause of intractable voice-related disability and reduced quality of life. Excision of fibrotic regions is suboptimal and associated with scar recurrence and/or further iatrogenic damage. Non-surgical interventions are limited, putatively related to limited insight regarding biochemical events underlying fibrosis, and downstream, the lack of therapeutic targets. YAP/TAZ integrates diverse cell signaling events and interacts with signaling pathways related to fibrosis, including the TGF-β/SMAD pathway. We investigated the expression of YAP/TAZ following vocal fold injury in vivo as well as the effects of TGF-β1 on YAP/TAZ activity in human vocal fold fibroblasts, fibroblast-myofibroblast transition, and TGF-β/SMAD signaling. Iatrogenic injury increased nuclear localization of YAP and TAZ in fibrotic rat vocal folds. In vitro, TGF-β1 activated YAP and TAZ in human VF fibroblasts, and inhibition of YAP/TAZ reversed TGF-β1-stimulated fibroplastic gene upregulation. Additionally, TGF-β1 induced localization of YAP and TAZ in close proximity to SMAD2/3, and nuclear accumulation of SMAD2/3 was inhibited by a YAP/TAZ inhibitor. Collectively, YAP and TAZ were synergistically activated with the TGF-β/SMAD pathway, and likely essential for the fibroplastic phenotypic shift in VF fibroblasts. Based on these data, YAP/TAZ may evolve as an attractive therapeutic target for VF fibrosis.


2020 ◽  
Vol 18 (1) ◽  
pp. 2-14 ◽  
Author(s):  
Aida Doostkam ◽  
Kamyar Iravani ◽  
Shahindokht Bassiri-Jahromi

: Polyphenols have received high attention due to their biological functions. Pomegranate (Punica granatum L.) is a rich source of polyphenols such as tannin, ellagitannin, flavonoids and other phenolic acids. The potential therapeutic uses of pomegranate appear to be wide diversity. Pomegranate contains strong antioxidant activity, and antimicrobial properties, with potential health interests. : This review has been performed on a method of systematic narrative review on the antimicrobial potency of different parts of pomegranate. A search was performed in PubMed, Web of Science, Science Direct, Scopus and Google Scholar from 1986 to 2018 to obtain related studies. The aim of this review present an overview of the aspect and advantages of Punica granatum L. and summarize the present data on the pomegranate anti-microbial activity in in-vitro and in-vivo tests, animal trial systems and human clinical trials. Also, this review discussed the pomegranate extracts activities and their future application. : The findings of this review support that the pomegranate might be possible to use in the control and potential therapeutics of some microbial infections. This review highlights the new researches on the anti-microbial activities of pomegranate.


2019 ◽  
Vol 4 (9) ◽  
pp. 1312-1322 ◽  
Author(s):  
Taeko Hashimoto ◽  
Yutaka Harita ◽  
Keiichi Takizawa ◽  
Seiya Urae ◽  
Kiyonobu Ishizuka ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Andreas Kronbichler ◽  
Moin A. Saleem ◽  
Björn Meijers ◽  
Jae Il Shin

Focal segmental glomerulosclerosis (FSGS) is one of the primary glomerular disorders in both children and adults which can progress to end-stage renal failure. Although there are genetic and secondary causes, circulating factors have also been regarded as an important factor in the pathogenesis of FSGS, because about 40% of the patients with FSGS have recurrence after renal transplantation. Soluble urokinase-type plasminogen activator receptor (suPAR) is a soluble form of uPAR, which is a membrane-bound protein linked to GPI in various immunologically active cells, including podocytes. It has recently been suggested as a potential circulating factor in FSGS by in vitro podocyte experiments, in vivo mice models, and human studies. However, there have also been controversies on this issue, because subsequent studies showed conflicting results. suPAR levels were also increased in patients with other glomerular diseases and were inversely correlated with estimated glomerular filtration rate. Nevertheless, there has been no balanced review on this issue. In this review, we compare the conflicting data on the involvement of suPAR in the pathogenesis of FSGS and shed light on interpretation by taking into account many points and the potential variables and confounders influencing serum suPAR levels.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Yayu Li ◽  
Xue Jiang ◽  
Litao Song ◽  
Mengdie Yang ◽  
Jing Pan

Abstract Triptolide (TPL), the active component of Tripterygium wilfordii, exhibits anti-cancer and antioxidant functions. We aimed to explore the anti-apoptosis mechanism of TPL based on network pharmacology and in vivo and in vitro research validation using a rat model of focal segmental glomerulosclerosis (FSGS). The chemical structures and pharmacological activities of the compounds reported in T. wilfordii were determined and used to perform the network pharmacology analysis. The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was then used to identify the network targets for 16 compounds from Tripterygium wilfordii. Our results showed that 47 overlapping genes obtained from the GeneCards and OMIM databases were involved in the occurrence and development of FSGS and used to construct the protein–protein interaction (PPI) network using the STRING database. Hub genes were identified via the MCODE plug-in of the Cytoscape software. IL4 was the target gene of TPL in FSGS and was mainly enriched in the cell apoptosis term and p53 signaling pathway, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. TPL inhibited FSGS-induced cell apoptosis in rats and regulated IL4, nephrin, podocin, and p53 protein levels via using CCK8, TUNEL, and Western blot assays. The effects of IL4 overexpression, including inhibition of cell viability and promotion of apoptosis, were reversed by TPL. TPL treatment increased the expression of nephrin and podocin and decreased p53 expression in rat podocytes. In conclusion, TPL inhibited podocyte apoptosis by targeting IL4 to alleviate kidney injury in FSGS rats.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 242 ◽  
Author(s):  
Valeria Maria Morittu ◽  
Vincenzo Mastellone ◽  
Rosa Tundis ◽  
Monica Rosa Loizzo ◽  
Raffaella Tudisco ◽  
...  

A clarification method was proposed to ameliorate the technological quality of fruit juices by preserving bioactive compounds. This study evaluated the in vitro antioxidant and hypoglycemic activities and the in vivo effects of Punica granatum L. natural (NJ) and clarified (CJ) juice by polyvinylidene fluoride (PVDF) hollow fiber membrane. CJ was more active as an antioxidant and as a α-glucosidase inhibitor than NJ. Mice were orally gavaged with water (Control), NJ, and CJ for 28 days. NJ group showed significant decrease of alanine aminotransferase, aspartate amino transferase, and creatine-phosphokinase. CJ administration was associated with urea, creatine-phosphokinase, and triglycerides values significantly lower with respect to the control. Oxidative status was ameliorated with CJ administration, showing a reactive oxygen metabolites (d-ROMs) reduction of 32% and a biological antioxidant potential (BAP) boosting of 23% compared to the control, whereas NJ did not show a similar effect. Results confirmed the beneficial properties of pomegranate juice, showing that membrane clarification may enhance such effects in terms of antioxidant activity.


2002 ◽  
Vol 61 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Juergen Strehlau ◽  
Asher D. Schachter ◽  
Martha Pavlakis ◽  
Anup Singh ◽  
Amir Tejani ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


Sign in / Sign up

Export Citation Format

Share Document