scholarly journals Hesperetin, a dietary flavonoid, inhibits AGEs-induced oxidative stress and inflammation in RAW264.7 cells

2021 ◽  
Vol 81 ◽  
pp. 104480
Author(s):  
Jing Teng ◽  
Jun Li ◽  
Yueliang Zhao ◽  
Mingfu Wang
2021 ◽  
Vol 275 ◽  
pp. 114129
Author(s):  
Mengqin Liu ◽  
Sha Liu ◽  
Qi Zhang ◽  
Yingqi Fang ◽  
Yanwei Yu ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Qiang Chu ◽  
Xin Yu ◽  
Ruoyi Jia ◽  
Yaxuan Wang ◽  
Yiru Zhang ◽  
...  

Apios americana Medikus was once widely accepted as staple food in India for a long time, and the tuber of which possesses high nutrients. During the past decades, most of the research has focused on the biological activity in the tubers of Apios americana Medikus whereas the leaves were ignored. In this study, the Apios americana Medikus leaf extract (ALE) was obtained and seven compounds were identified. LPS-induced RAW264.7 cells were used to study the anti-inflammation activity of ALE. As expected, ALE reduced the secretion of nitric oxide (NO) and inflammatory cytokines via inhibition of NF-κB and MAPK signaling together with activation of Nrf2-Keap1 and FOXO pathways, as well as alleviating the oxidative stress and mitochondrial dysfunction. In addition, ALE could activate HMGB1-Beclin1 and Sirt1-FoxO1 pathways and inhibit the Akt-mTOR signaling pathway to activate autophagy, protecting RAW264.7 cells from inflammation. In summary, our results suggested that ALE might help activate the anti-inflammation system, resulting in the prevention of LPS-induced damage in RAW264.7 cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Ruan ◽  
Hong Li ◽  
Lianmei Pu ◽  
Tao Shen ◽  
Zening Jin

Aim. To investigate the function of Tremella fuciformis polysaccharides (TFPS) in LPS-induced inflammation and oxidative stress of macrophages. Methods. RAW264.7 cells were pretreated with TFPS and then stimulated with 0.1 μg/ml LPS. NFκB, Akt, p38MAPK, MCP-1, and SOD-1 were analyzed by Western blotting. Cell viability was measured using MTT assays. Reactive oxygen species (ROS) production, real-time PCR, ELISA, and immunofluorescence staining were performed on RAW264.7 cells that were treated with LPS and/or TFPS to investigate the anti-inflammatory effect of TFPS. Results. LPS induced inflammation and ROS production and promoted the secretion of cytokines such as TNF-α and IL-6. LPS also enhanced the nuclear translocation of NFκB, which promoted inflammation by oxidative stress. However, pretreatment with TFPS profoundly inhibited the activation of Akt, p38MAPK, and NFκB and attenuated the expression of MCP-1 in macrophages. Meanwhile, TFPS also decreased cytokine and ROS levels and attenuated cell inflammation after treatment with LPS. Moreover, miR-155, one of the key small RNAs which regulate NFκB and inflammation in macrophages, was significantly downregulated. Conclusion. TFPS inhibits LPS-induced oxidative stress and inflammation by inhibiting miR-155 expression and NFκB activation in macrophages, which suggests that TFPS may be a potential reagent for inhibiting the development of inflammation.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1419
Author(s):  
Nidhi Sharma ◽  
Subhrajit Biswas ◽  
Noura Al-Dayan ◽  
Alaa Saud Alhegaili ◽  
Maryam Sarwat

Reactive oxygen species (ROS) are noxious to cells because their increased level interacts with the body’s defense mechanism. These species also cause mutations and uncontrolled cell division, resulting in oxidative stress (OS). Prolonged oxidative stress is responsible for incorrect protein folding in the endoplasmic reticulum (ER), causing a stressful condition, ER stress. These cellular stresses (oxidative stress and ER stress) are well-recognized biological factors that play a prominent role in the progression of hepatocellular carcinoma (HCC). HCC is a critical global health problem and the third leading cause of cancer-related mortality. The application of anti-oxidants from herbal sources significantly reduces oxidative stress. Kaempferol (KP) is a naturally occurring, aglycone dietary flavonoid that is present in various plants (Crocus sativus, Coccinia grandis, Euphorbia pekinensis, varieties of Aloe vera, etc.) It is capable of interacting with pleiotropic proteins of the human body. Efforts are in progress to develop KP as a potential candidate to prevent HCC with no adverse effects. This review emphasizes the molecular mechanism of KP for treating HCC, targeting oxidative stress.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1857 ◽  
Author(s):  
Chuanshang Cheng ◽  
Yi Zou ◽  
Jian Peng

Oregano is an aromatic plant widely distributed throughout the Mediterranean area and in Asia. Recent studies have revealed that the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. This study determined whether oregano essential oil (OEO) exerts an anti-inflammatory effect on lipopolysaccharide (LPS)-treated murine macrophage cells (RAW264.7 cells) in vitro and elucidated the possible underlying molecular mechanisms. The results showed that OEO (2.5–10 μg/mL) inhibited the expression and secretion of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in RAW264.7 cells treated with LPS (1 μg/mL). Consistent with the pro-inflammatory gene expression, the OEO treatment efficiently reduced the LPS-induced activation of mitogen-activated protein kinase, protein kinase B, and nuclear factor κB in RAW264.7 cells. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition in Nox2 protein-silenced cells attenuated the mRNA expression of IL-1β, IL-6, and TNF-α in the LPS-induced RAW264.7 cells. The OEO inhibited the LPS-induced elevation of NADPH oxidase and oxidative stress. This result suggests that LPS induces RAW264.7 cell inflammation through the NADPH oxidase-mediated production of reactive oxygen species (ROS). In conclusion, OEO protects against the LPS-induced RAW264.7 cell inflammatory response through the NADPH oxidase/ROS pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jie Tang ◽  
Ping Diao ◽  
Xiaohong Shu ◽  
Li Li ◽  
Lidan Xiong

Background. Nowadays, atmospheric pollutants, ultraviolet rays, and other factors cause the imbalance of cell redox, resulting in skin oxidative damage. There is an interaction between inflammatory response and oxidative stress, which often involve networks of reactions and serve to amplify each other. Quercetin and quercitrin, with strong antioxidant and anti-inflammatory properties, were widely applied in cardiovascular disease, osteoporsis, pulmonary disease, etc. However, the regulation mechanism of quercetin and quercitrin on various inflammatory skin diseases is still not clear. Purpose. In this study, quercetin and quercitrin were used to investigate whether they had anti-inflammatory and anti-ROS effects. Besides, theoretical calculation method was also adopted to preliminarily explore the mechanism of the anti-inflammatory and antioxidant effects of these two substances. Methods. CCK-8 assay was employed to investigate the cytotoxicity. The concentration of NO measured by Griess Reaction System. Moreover, the inflammatory factors (TNF-α, IL-1β, and IL-6) were reduced in LPS-stimulated RAW264.7 cells were tested by ELISA kits. The trend of ROS changes was detected by DCFH-DA method. Finally, the mechanism of the anti-inflammatory and antioxidant effects of these two substances was carried out by DMol3 package in Materials Studio. Results. CCK-8 assay results guided that the safe concentration of quercetin and quercitrin was lower than 15.0 μg/mL and 22.4 μg/mL, respectively. Also, the concentration of NO could significantly be inhibited by quercetin and quercitrin. Besides, the ELISA results showed that TNF-α, IL-1β, and IL-6 were reduced in LPS-stimulated RAW264.7 cells after interfering with quercetin and quercitrin. The trend of ROS changes was similar to that of inflammatory factors. Finally, the theoretical calculation illustrated that the oxygen atom on B rings may be the main site of electron cloud density changes, which may suggest a possible mechanism for the anti-inflammatory and ROS scavenging effects of quercetin and quercitrin. Conclusions. This experiment shows that LPS can induce the overactivating of macrophages and the activated macrophages can subsequently induce inflammatory storms and oxidative stress. Both quercetin and quercitrin can inhibit LPS-induced macrophage inflammation and oxidative stress by experiment and theoretical calculations.


PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0216711 ◽  
Author(s):  
Xinyu Lin ◽  
Dingping Bai ◽  
Zixi Wei ◽  
Ying Zhang ◽  
Yifan Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document