Bacteraemia in 66 cats and antimicrobial susceptibility of the isolates (1995–2004)

2007 ◽  
Vol 9 (5) ◽  
pp. 404-410 ◽  
Author(s):  
Martina Greiner ◽  
Georg Wolf ◽  
Katrin Hartmann

Bacterial blood culture results of 292 privately owned cats presented to the Clinic for Small Animal Medicine, Ludwig Maximilian University Munich with signs of sepsis were evaluated retrospectively. Of the blood cultures, 23% were positive. In 88%, a single bacterial species was isolated. Of all bacterial isolates, 45% were Gram-positive, 43% were Gram-negative, and 12% were obligate anaerobes. The most frequently isolated bacteria were Enterobacteriaceae, obligate anaerobic species, Staphylococcus species and Streptococcus species. Of the cats with positive blood cultures, 32% were pretreated with antibiotics. Of all bacterial isolates, 77% were susceptible to enrofloxacin, 69% to chloramphenicol, 67% to gentamicin, and 64% to amoxycillin clavulanic acid. Only enrofloxacin reached an in vitro efficacy of more than 70% against Gram-positive and more than 74% against Gram-negative bacteria.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mohabaw Jemal ◽  
Teshiwal Deress ◽  
Teshome Belachew ◽  
Yesuf Adem

Background. The emergence and spread of antimicrobial resistance in bacteria is recognized as a global public health problem. Bloodstream infection with antimicrobial-resistant bacteria in HIV/AIDS patients makes the problem more challenging. So, regular and periodic diagnosis and use of the appropriate antimicrobial susceptibility pattern determination is the only option for decreasing the prevalence and development of drug-resistant bacteria. Methods. An institution-based cross-sectional study was conducted among 384 HIV/AIDS patients. Sociodemographic data of patients were recorded using structured questionnaires. Blood cultures were collected with BACTEC aerobic blood culture bottles. A pair of samples was collected from each patient aseptically and incubated at 37°. If samples are positive for bacterial agents, they were subcultured to solid media such as blood agar plate, chocolate agar plate, and MacConkey agar plates. Identification was performed using colony characteristics and standard biochemical techniques. The antimicrobial susceptibility test was determined by the Kirby–Bauer disc diffusion method. Data entry and analysis were performed while using SPSS version 20. Descriptive statistics were performed to calculate frequencies. Results. Altogether, 384 patients were included, and 123 blood cultures were positive, so that the yield was thus 32%. About 46 (37.4%) of Gram-negative and 77 (62.6%) of Gram-positive bacterial species were identified. Among Gram-negative bacterial isolates, K. pneumoniae was the leading pathogen, 19 (41.3%), whereas S. aureus, 38 (49.4%), was predominant among Gram-positive isolates. In his study, the majority of Gram-positive isolates showed high level of resistance to penicillin, 72 (95.5%), tetracycline, 55 (71.4%), and cotrimoxazole, 45 (58.4%). About 28 (73.6%) of S. aureus isolates were also methicillin-resistant. Gram-negative bacterial isolates also showed a high resistance to ampicillin (91.3%), tetracycline (91.3%), and gentamicin (47.8%). Overall, about 78% of multidrug resistance was observed. Conclusion. Several pathogens were resistant to greater than five antimicrobial agents, so that proper management of patients with bacteremia is needed, and a careful selection of effective antibiotics should be practiced.


2015 ◽  
Vol 59 (10) ◽  
pp. 6053-6063 ◽  
Author(s):  
Douglas J. Biedenbach ◽  
Michael D. Huband ◽  
Meredith Hackel ◽  
Boudewijn L. M. de Jonge ◽  
Daniel F. Sahm ◽  
...  

ABSTRACTAZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed thein vitroactivity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter againstStaphylococcus aureus(n= 11,680), coagulase-negative staphylococci (n= 1,923), streptococci (n= 4,380), andMoraxella catarrhalis(n= 145), 0.5 mg/liter againstStaphylococcus lugdunensis(n= 120) andHaemophilus influenzae(n= 352), 1 mg/liter againstEnterococcus faecalis(n= 1,241), and 2 mg/liter againstHaemophilus parainfluenzae(n= 70). The activity againstEnterococcus faeciumwas more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producingHaemophilusspp., andM. catarrhalis. Based on thesein vitrofindings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species.


2014 ◽  
Vol 59 (1) ◽  
pp. 467-474 ◽  
Author(s):  
Michael D. Huband ◽  
Patricia A. Bradford ◽  
Linda G. Otterson ◽  
Gregory S. Basarab ◽  
Amy C. Kutschke ◽  
...  

ABSTRACTAZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potentin vitroantibacterial activity against key Gram-positive (Staphylococcus aureus,Staphylococcus epidermidis,Streptococcus pneumoniae,Streptococcus pyogenes, andStreptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzaeandNeisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance inS. aureus, and if mutants were obtained, the mutations mapped togyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration andin vitrotime-kill studies. Inin vitrocheckerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potentin vitroantibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.


2019 ◽  
Vol 15 (7) ◽  
pp. 1598-1608
Author(s):  
Hongna Liu ◽  
Kathryn Heflin ◽  
Jian Han ◽  
Matt Conover ◽  
Leslie Wagner ◽  
...  

We utilized Amplicon-Rescue Multiplex PCR (ARM-PCR) and microarray hybridization to develop and validate the iC-GPC Assay, a multiplexed, in vitro diagnostic test that identifies five of the most common gram positive bacteria and three clinically relevant resistance markers associated with bloodstream infections (BSI). The iC-GPC Assay is designed for use with the iC-System™, which automates sample preparation, ARM-PCR, and microarray detection within a closed cassette. Herein, we determined the limit of detection for each of the iC-GPC Assay targets to be between 3.0 × 105–1.7 × 107 CFU/mL, well below clinically relevant bacterial levels for positive blood cultures. Additionally, we tested 106 strains for assay inclusivity and observed a target performance of 99.4%. 95 of 96 non-target organisms tested negative for cross-reactivity, thereby assuring a high level of assay specificity. Overall performance above 99% was observed for iC-GPC Assay reproducibility studies across multiple sites, operators and cassette lots. In conclusion, the iC-GPC Assay is capable of accurately and rapidly identifying bacterial species and resistance determinants present in blood cultures containing gram positive bacteria. Utilizing molecular diagnostics like the iC-GPC Assay will decrease time to treatment, healthcare costs, and BSI-related mortality.


2015 ◽  
Vol 290 (34) ◽  
pp. 20984-20994 ◽  
Author(s):  
Gunther Kern ◽  
Tiffany Palmer ◽  
David E. Ehmann ◽  
Adam B. Shapiro ◽  
Beth Andrews ◽  
...  

We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.


2016 ◽  
Vol 29 (1) ◽  
pp. 37-40
Author(s):  
Amna Ali ◽  
M Saleem Haider ◽  
Sobia Mushtaq ◽  
Ibatsam Khokhar ◽  
Irum Mukhtar ◽  
...  

The antimicrobial agents of bacteria isolated from different rhizosphere of fruits and vegetables soil in Lahore. Of ten species, five were gram-negative (Escherichia coli, Pseudomonas fluorescence, Klebsiella pneumoniae, Salmonella typhii, Brachybacterium faecium); other five were gram positive and identified as Bacillus farraginis, Kurthia gibsonii, Aureobacterium liquefaciens, Curtobacterium albidum, Micrococcus lylae. The antagonistic potential of bacterial strains was assessed by the well diffusion technique and results indicating varying degree of biocontrol activity against pathogenic strain of X. campestris. Out of ten bacterial species, E. coli (gram negative) and C. albidum (gram positive) showed a high prevalence of resistance with reduction of 4.2cm and 4.1cm zone diameter respectively. The minimum inhibitory volume (MIV) to two bio-agents was determined for X. campestris from range 10-100 ?L. E. coli (volume required to inhibit < 20 ?L) and C. albidum (volume required to inhibit < 40 ?L) exhibited good activity against pathogen. These results provide information on the prevalence of resistant bacterial strains with the MIV of organisms and indicate the possibility of using these bacterial species as bio-agent against X. campestris.Bangladesh J Microbiol, Volume 29, Number 1, June 2012, pp 37-40


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S628-S629
Author(s):  
Bahgat Gerges ◽  
Issam I Raad ◽  
Joel Rosenblatt ◽  
Samuel Shelbume ◽  
Randal Prince ◽  
...  

Abstract Background Fluoroquinolones have been used for infection prevention in patients with cancer (PWC). They are active against many Gram-negative bacilli (GNB) but are less active against Gram-positive organisms (GPO). Quinolone resistance is increasing and many institutions are using combination regimens for antimicrobial prophylaxis. We evaluated the in vitro activity of delafloxacin (DLX), a novel fluoroquinolone, and selected comparators against 560 bacterial isolates from PWC. Methods Isolates were from recent blood cultures. Susceptibility testing and time kill studies (TKS) were performed using CLSI approved methodology. Appropriate ATCC control strains were used. We calculated MIC50, MIC90, MIC ranges and percent susceptibility using FDA breakpoints when available. TKS were performed on 4 streptococcus mitis isolates at concentrations of MIC, 4x MIC, and 8x MIC. Results DLX was more active than ciprofloxacin (CIP) and levofloxacin (LEV) against methicillin-susceptible (MSSA), and resistant (MRSA) S. aureus, coagulase-negative staphylococci (CoNS), and viridans group streptococci (VGS), and had similar activity against beta-hemolytic streptococci. It also had low MICs for Bacillus species (SPP.), Listeria monocytogenes, Micrococcus spp., and Rothia spp. Overall GPO susceptibility was 73% to DLX, 42% to CIP, and 52% to LEV. The activity of DLX against Enterobacterales was similar to CIP and LEV. All 3 agents had moderate activity against Citrobacter spp., and non-MDR P. aeruginosa. Notably, all 3 quinolones had poor activity against E. coli, P. mirabilis, and MDR P. aeruginosa, all common pathogens in PWC. All 3 had low MICs for Acinetobacter spp. DLX and LEV achieved peak bactericidal activity at 6-8 h against all 4 VGS isolates (maximum activity at 8x MIC) but this was not always sustained at 24 h. Table 1. Percent Susceptibility of selected Gram-positive isolates to Delafloxacin, Ciprofloxacin and Levofloxacin Table 2. Percent Susceptibility of selected Gram-negative isolates to Delafloxacin, Ciprofloxacin and Levofloxacin Figure 1. Bactericidal Activity of DLX at 1x , 4x, and 8x MIC against VGS - Time Kill Study Conclusion DLX is more active than CIP and LEV against many GPO from PWC (including S. aureus and VGS), but like these agents there are significant gaps in its coverage against GNB. It is probably not suitable as a single agent for antimicrobial prophylaxis in high-risk PWC. The current practice of combining a quinolone with a beta-lactam probably still represents the best option in PWC who need prophylaxis. Disclosures Kenneth Rolston, MD, Tetraphase Pharmaceuticals (Grant/Research Support)


Author(s):  
Ibrahim S. I. Al-Adham ◽  
Sehar Wani ◽  
Elham Al-Kaissi ◽  
Phillip J. Collier

Objectives: The aim of this study was to determine if it is possible to establish and maintain a binary biofilm consisting of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, which could be used as a multi-species model for antibiotic action studies. Materials and Methods: A medium controlled, continuous culture biofilm model was developed based upon the previously developed Sorbarod™ model. This new model was designed to enable the growth of B. subtilis and E. coli at the same time without either out-competing the other. Results: A pseudo-steady-state binary biofilm was established, which could be maintained for a total of 53 hours. This biofilm was tested to confirm the ability of the biofilm model to support the growth of a Gram-positive (Bacillus subtilis) and a Gram-negative (Escherichia coli) bacterial species under the same conditions of media throughput, aeration and temperature. Conclusions: This paper gives evidence of the ability to develop and control binary biofilm models to maintain the growth of two Gram-dissimilar species of bacteria. We believe this is a novel concept and will aid the future in vitro assessment of antibiotic activity in coinfection models.


Author(s):  
Fen Pan ◽  
Wantong Zhao ◽  
Hong Zhang

Objective. This study was to investigate the microbiological characteristics and the relationship between the time to positivity (TTP) of blood cultures and different bacterial species and to assess the clinical value of TTP in children with bloodstream infections (BSIs). Methods. The TTP of all the blood cultures from children with suspected BSIs was retrospectively collected in 2016. The microbiological characteristics and the relationship between the TTP of blood cultures and different bacterial species were also analyzed. Results. A total of 808 strains were isolated from 15835 blood cultures collected, and 145 (17.9%) were Gram-negative, 636 (78.7%) were Gram-positive, and 27 (3.3%) were fungi. The bacteria were divided into definite pathogens (174), possible pathogens (592), fungi (27), and contaminants (15). The average TTP of all positive blood cultures was 30.97 and ranged from 3.23 h to 92.73 h. The TTP of Gram-negative strains was significantly shorter than that of Gram-positive strains (P<0.001) and fungi (P = 0.032). The mean TTP for E. coli (15.60 h) was shortest within the group of Gram-negative isolates, and the mean TTP for Streptococcus (17.34 h) within the group of Gram-positive isolates. Significant difference of the TTP was detected in methicillin-resistant vs methicillin-susceptible S. aureus, extended-spectrum beta-lactamases (ESBLs) positive vs negative Enterobacteriaceae, and extensive drug-resistant and non-XDR A. baumannii. The median TTP in patients with BSI was significantly shorter than in those without it (P<0.001). ROC curve analysis indicated that the TTP cutoff value of CoNS, S. aureus, E. coli, and K. pneumoniae was 22.72 h, 19.6 h, 18.58 h, and 16.43 h, respectively, with most sensitive and specific predictor of BSIs. Conclusions. Our data acknowledged that TTP is a valuable index for the early prognosis of BSIs. TTP not only provides additional utility as a general predictor of bacteria with smear result but also provides the implication of drug-resistant organisms.


Sign in / Sign up

Export Citation Format

Share Document