Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size

2009 ◽  
Vol 165 (1-3) ◽  
pp. 291-299 ◽  
Author(s):  
F. Raposo ◽  
M.A. De La Rubia ◽  
R. Borja
2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


1986 ◽  
Vol 18 (1) ◽  
pp. 31-42 ◽  
Author(s):  
E. A. Shpirt ◽  
K. T. Alben

The particle size distribution at different bed depths of a fixed bed of granular activated carbon (GAC) has been monitored during 50 weeks of a pilot column run at the Waterford, New York potable water treatment plant. Initial backwashing resulted in significant stratification of GAC in the column: larger particles (average diameter 1.18 mm) settled in the bottom of the column (105 cm), and smaller particles (average diameter 0.97 mm) were concentrated near the top (24 cm), compared to samples of unstratified virgin Calgon F400 (average diameter 1.09 mm). During column loading and initial backwashing, more fines were created than were present in the virgin GAC (average 6.5% of GAC fines in the > 40 mesh fraction, compared to only 0.3% in the > 40 mesh fraction for virgin Calgon F400). After 50 weeks of service there was an overall trend toward a smaller average particle size (0.9 mm) with development of a more regular pattern of bed stratification (1.08 mm at the bottom and 0.75 mm at the top). These changes are attributed to breaking of large particles (12-20 mesh) and creation of intermediate size particles (20-30 and 30-40 mesh).


2019 ◽  
Vol 5 (3) ◽  
pp. 609-617 ◽  
Author(s):  
Yifeng Huang ◽  
Zhijie Nie ◽  
Jie Yuan ◽  
Audrey Murray ◽  
Yi Li ◽  
...  

A test was developed to measure the present-day adsorptive capacity of granular activated to help drinking water treatment professionals to determine when the GAC needs replacement.


2019 ◽  
Vol 4 (1-2) ◽  
pp. 1-6
Author(s):  
M. Mahadeva Swamy ◽  
B.M. Nagabhushana ◽  
Nagaraju Kottam

The present experiment explains the effectiveness of adsorption studies of methylene blue dye from aqueous solutions on activated carbon from Selenicereus grandiflorus (SG) treated with conc. sulfuric acid. The sulphuric acid-treated Selenicereus grandiflorus activated carbon (SGAC) was used as low-cost adsorbent for the removal of methylene blue dye from aqueous solution. It suggests an ideal alternative method to adsorption of dye compared to other expensive treatment options. The adsorption studies have been conducted at different experimental parameters, i.e., pH, contact time, adsorbent dose and initial dye concentration. The batch mode experiments were conducted by different adsorbent dose (0.03-0.150 g per 50 mL), pH of the solution (2-12), effect of time (3-18 min), initial dye concentration (10 mg/L), point of zero charge and regeneration of spent adsorbent studies. Langmuir model shows better fit to the equilibrium data (R2 = 0.966) than Freundlich model. The adsorption capacity (Qm) of SGAC increases with increasing dosage where Qm is 16.17 mg g-1.


2006 ◽  
Vol 72 (8) ◽  
pp. 5190-5196 ◽  
Author(s):  
Ekaterina Paramonova ◽  
Erica L. Zerfoss ◽  
Bruce E. Logan

ABSTRACT Point-of-use filters containing granular activated carbon (GAC) are an effective method for removing certain chemicals from water, but their ability to remove bacteria and viruses has been relatively untested. Collision efficiencies (α) were determined using clean-bed filtration theory for two bacteria (Raoutella terrigena 33257 and Escherichia coli 25922), a bacteriophage (MS2), and latex microspheres for four GAC samples. These GAC samples had particle size distributions that were bimodal, but only a single particle diameter can be used in the filtration equation. Therefore, consistent with previous reports, we used a particle diameter based on the smallest diameter of the particles (derived from the projected areas of 10% of the smallest particles). The bacterial collision efficiencies calculated using the filtration model were high (0.8 ≤ α ≤ 4.9), indicating that GAC was an effective capture material. Collision efficiencies greater than unity reflect an underestimation of the collision frequency, likely as a result of particle roughness and wide GAC size distributions. The collision efficiencies for microspheres (0.7 ≤ α ≤ 3.5) were similar to those obtained for bacteria, suggesting that the microspheres were a reasonable surrogate for the bacteria. The bacteriophage collision efficiencies ranged from ≥0.2 to ≤0.4. The predicted levels of removal for 1-cm-thick carbon beds ranged from 0.8 to 3 log for the bacteria and from 0.3 to 1.0 log for the phage. These tests demonstrated that GAC can be an effective material for removal of bacteria and phage and that GAC particle size is a more important factor than relative stickiness for effective particle removal.


Sign in / Sign up

Export Citation Format

Share Document