Preparation of inverse opal adsorbent by water-soluble colloidal crystal template to obtain ultrahigh adsorption capacity for salicylic acid removal from aqueous solution

2019 ◽  
Vol 371 ◽  
pp. 362-369 ◽  
Author(s):  
Xiuli Wang ◽  
Yingchun Guo ◽  
Xueri Nan ◽  
Shang Shi ◽  
Xiaomei Wang ◽  
...  
2017 ◽  
Vol 25 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Yunlu Pan ◽  
Xuezeng Zhao ◽  
Yingjie Liu ◽  
He Zhang

2009 ◽  
Vol 18 (04) ◽  
pp. 611-616 ◽  
Author(s):  
MING FU ◽  
AILUN ZHAO ◽  
JI ZHOU ◽  
DAWEI HE ◽  
YONGSHENG WANG

This paper presents a versatile method for fabricating 3D macroporous materials using colloidal crystals as the templates. ZnO and Cu2O were deposited by the electrochemical method via the colloidal crystal template. Not only were 3D inverse opal structures and 2D nanobowls fabricated, but nanoparticles with a controlled shape were also prepared. Morphological controls via colloidal crystal templating are discussed.


NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050047
Author(s):  
Yanhong Wang ◽  
Xiuli Wang ◽  
Cuihong Wu ◽  
Xiaomei Wang ◽  
Xu Zhang

A hybrid adsorbent with inverse opal (IO) structure was prepared for removing Cd(II) from aqueous solution. The functional polymeric chains were grafted from the pore wall of IO silica to prepare the porous hybrid material by surface-initiated atom-transfer radical polymerization. Furthermore, the amidation reaction was carried out to obtain diethylenetriamine-modified hybrid adsorbent (IO SiO2-g-PAA-DETA). Batch adsorption of removing Cd(II) onto IO SiO2-g-PAA-DETA was studied as the effect of solution pH, adsorbent doses, contact time, ionic concentration, and temperature. When the grafted amount was 73%, the maximum adsorption capacity was obtained. The optimum adsorbent dose and pH value for adsorbing Cd(II) were found to be 5[Formula: see text]g/L and 0.5[Formula: see text]g/L, respectively. The adsorption capacity was almost unaffected by Na[Formula: see text] at low concentrations. The adsorption data was depicted by the corresponding models and the results displayed that adsorbing Cd(II) on IO SiO2-g-PAA-DETA followed the Freundlich and pseudo-first-order model. In addition, after six adsorption–desorption cycles, IO adsorbent could remain above 80% of the first adsorption ability while it was washed using 0.025[Formula: see text]M EDTA.


2019 ◽  
Author(s):  
Nancy Watfa ◽  
Weimin Xuan ◽  
Zoe Sinclair ◽  
Robert Pow ◽  
Yousef Abul-Haija ◽  
...  

Investigations of chiral host guest chemistry are important to explore recognition in confined environments. Here, by synthesizing water-soluble chiral porous nanocapsule based on the inorganic metal-oxo Keplerate-type cluster, {Mo<sub>132</sub>} with chiral lactate ligands with the composition [Mo<sub>132</sub>O<sub>372</sub>(H<sub>2</sub>O)<sub>72</sub>(<i>x-</i>Lactate)<sub>30</sub>]<sup>42-</sup> (<i>x</i> = D or L), it was possible to study the interaction with a chiral guest, L/D-carnitine and (<i>R</i>/<i>S</i>)-2-butanol in aqueous solution. The enantioselective recognition was studied by quantitative <sup>1</sup>H NMR and <sup>1</sup>H DOSY NMR which highlighted that the chiral recognition is regulated by two distinct sites. Differences in the association constants (K) of L- and D-carnitine, which, due to their charge, are generally restricted from entering the interior of the host, are observed, indicating that their recognition predominantly occurs at the surface pores of the structure. Conversely, a larger difference in association constants (K<i><sub>S</sub></i>/K<i><sub>R</sub></i> = 3) is observed for recognition within the capsule interior of (<i>R</i>)- and (<i>S</i>)-2-butanol.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Ramona B. J. Ihlenburg ◽  
Anne-Catherine Lehnen ◽  
Joachim Koetz ◽  
Andreas Taubert

New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.


2021 ◽  
Vol 45 (14) ◽  
pp. 6192-6205
Author(s):  
Haiqing Xu ◽  
Yuhang Gao ◽  
Qiantu Tao ◽  
Aiping Li ◽  
Zhanchao Liu ◽  
...  

The molecularly imprinted polymer prepared on the nanoreactor SBA-15 displayed excellent ordered mesoporous structure and superior adsorption property for salicylic acid.


2015 ◽  
Vol 3 (37) ◽  
pp. 9524-9527 ◽  
Author(s):  
Lu Li ◽  
Bin Zhao ◽  
Yue Long ◽  
Jin-Ming Gao ◽  
Guoqiang Yang ◽  
...  

This communication demonstrates a facile method to detect CO32− by naked eyes through color change based on the pH dependence of inverse opal photonic crystal polymer films.


2015 ◽  
Vol 1130 ◽  
pp. 685-688
Author(s):  
Rui Yi Fan ◽  
Qing Ping Yi ◽  
Qing Lin Zhang ◽  
Zheng Rong Luo

A biosorbent was prepared by treating the persimmon (Diospyros kaki Thunb.) fallen leaves with sodium hydroxide (NaOH). The NaOH concentration and stirring period for the preparation of the biosorbent were adjusted to optimise the Cd(I) adsorption capacity of the biosorbents. Removal of highly toxic Cadmium metal ions from water system using the optimal biosorbent named ‘NPFL’ was investigated using a mimic industrial column. The result showed that NPFL could remove Cd(II) in large quantities from aqueous solution with coexisting metal ions. The raw material, NPFL and Cd(II) loaded NPFL were characterized by SEM-EDS. The reusability of NPFL was also studied by batch adsorption-desorption test.


Sign in / Sign up

Export Citation Format

Share Document