Identifying time-varying hydrological model parameters to improve simulation efficiency by the ensemble Kalman filter: A joint assimilation of streamflow and actual evapotranspiration

2019 ◽  
Vol 568 ◽  
pp. 758-768 ◽  
Author(s):  
Mengsi Xiong ◽  
Pan Liu ◽  
Lei Cheng ◽  
Chao Deng ◽  
Ziling Gui ◽  
...  
2016 ◽  
Vol 20 (12) ◽  
pp. 4949-4961 ◽  
Author(s):  
Chao Deng ◽  
Pan Liu ◽  
Shenglian Guo ◽  
Zejun Li ◽  
Dingbao Wang

Abstract. Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982–2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.


2016 ◽  
Author(s):  
Chao Deng ◽  
Pan Liu ◽  
Shenglian Guo ◽  
Zejun Li ◽  
Dingbao Wang

Abstract. Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and human activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change, and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. Whereas, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982–2013, corresponding to the relatively stationary catchment characteristics. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.


2016 ◽  
Author(s):  
Chao Deng ◽  
Pan Liu ◽  
Shenglian Guo ◽  
Zejun Li ◽  
Dingbao Wang

Abstract. Hydrological model parameters play an important role in the ability of model prediction. In a stationary content, parameters of hydrological models are treated as constants. However, model parameters may vary dynamically with time under climate change and human activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model by assimilating the runoff observations, where one of state equations is that the model parameters should not change much within a short time period. Through a synthetic experiment, the proposed method is evaluated with various types of parameter variations including trend, abrupt change, and periodicity. The application of the method to the Wudinghe basin shows that the water storage capacity, a parameter in the model, has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of water storage capacity is explained by land use and land cover changes due to soil and water conservation measurements. Whereas, the application to the Tongtianhe basin demonstrates that the parameter of water storage capacity has no significant variation during the simulation of 1982–2013, corresponding to the relatively stationary catchment characteristics. Additionally, the proposed method improves the performance of hydrological modeling, and provides an effective tool for quantifying temporal variation of model parameters.


2021 ◽  
Vol 11 (7) ◽  
pp. 2898
Author(s):  
Humberto C. Godinez ◽  
Esteban Rougier

Simulation of fracture initiation, propagation, and arrest is a problem of interest for many applications in the scientific community. There are a number of numerical methods used for this purpose, and among the most widely accepted is the combined finite-discrete element method (FDEM). To model fracture with FDEM, material behavior is described by specifying a combination of elastic properties, strengths (in the normal and tangential directions), and energy dissipated in failure modes I and II, which are modeled by incorporating a parameterized softening curve defining a post-peak stress-displacement relationship unique to each material. In this work, we implement a data assimilation method to estimate key model parameter values with the objective of improving the calibration processes for FDEM fracture simulations. Specifically, we implement the ensemble Kalman filter assimilation method to the Hybrid Optimization Software Suite (HOSS), a FDEM-based code which was developed for the simulation of fracture and fragmentation behavior. We present a set of assimilation experiments to match the numerical results obtained for a Split Hopkinson Pressure Bar (SHPB) model with experimental observations for granite. We achieved this by calibrating a subset of model parameters. The results show a steady convergence of the assimilated parameter values towards observed time/stress curves from the SHPB observations. In particular, both tensile and shear strengths seem to be converging faster than the other parameters considered.


2009 ◽  
Vol 6 (4) ◽  
pp. 8279-8309 ◽  
Author(s):  
W. Ju ◽  
S. Wang ◽  
G. Yu ◽  
Y. Zhou ◽  
H. Wang

Abstract. Soil and atmospheric water deficits have significant influences on CO2 and energy exchanges between the atmosphere and terrestrial ecosystems. Model parameterization significantly affects the ability of a model to simulate carbon, water, and energy fluxes. In this study, an ensemble Kalman filter (EnKF) and observations of gross primary productivity (GPP) and latent heat (LE) fluxes were used to optimize model parameters significantly affecting the calculation of these fluxes for a subtropical coniferous plantation in southeastern China. The optimized parameters include the maximum carboxylation rate (Vcmax), the Ball-Berry coefficient (m) and the coefficient determining the sensitivity of stomatal conductance to atmospheric water vapor deficit D0). Optimized Vcmax and m showed larger seasonal and interannual variations than D0. Seasonal variations of Vcmax and m are more pronounced than the interannual variations. Vcmax and m are associated with soil water content (SWC). During dry periods, SWC at the 20 cm depth can explain 61% and 64% of variations of Vcmax and m, respectively. EnKF parameter optimization improves the simulations of GPP, LE and sensible heat (SH), mainly during dry periods. After parameter optimization using EnKF, the variations of GPP, LE and SH explained by the model increased by 1% to 4% at half-hourly steps and by 3% to 5% at daily time steps. Efforts are needed to develop algorithms that can properly describe the variations of these parameters under different environmental conditions.


2020 ◽  
Vol 10 (2) ◽  
pp. 550
Author(s):  
Kayleigh Campbell ◽  
Laura Staugler ◽  
Andrea Arnold

The classic Hodgkin-Huxley model is widely used for understanding the electrophysiological dynamics of a single neuron. While applying a low-amplitude constant current to the system results in a single voltage spike, it is possible to produce multiple voltage spikes by applying time-varying currents, which may not be experimentally measurable. The aim of this work is to estimate time-varying applied currents of different deterministic forms given noisy voltage data. In particular, we utilize an augmented ensemble Kalman filter with parameter tracking to estimate four different time-varying applied current parameters and associated Hodgkin-Huxley model states, along with uncertainty bounds in each case. We test the efficiency of the parameter tracking algorithm in this setting by analyzing the effects of changing the standard deviation of the parameter drift and the frequency of data available on the resulting time-varying applied current estimates and related uncertainty.


Sign in / Sign up

Export Citation Format

Share Document