Real-time Bioluminescent Imaging of Spatiotemporal Variation of Microbial Retention during Transport through Porous Media under Variably Saturated Flow Conditions

2021 ◽  
pp. 126603
Author(s):  
Liqiong Yang ◽  
Jia Kang ◽  
Xijuan Chen ◽  
Steven A. Ripp ◽  
William P. Johnson ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14602-14614 ◽  
Author(s):  
Hongjuan Bai ◽  
Nelly Cochet ◽  
Audrey Drelich ◽  
André Pauss ◽  
Edvina Lamy

The transport behaviour ofEscherichia coliandKlebsiellasp. was studied under saturated flow conditions to explore the effect of pore size distribution and bacteria cell properties on microbial transport.


Biofouling ◽  
2012 ◽  
Vol 28 (9) ◽  
pp. 937-951 ◽  
Author(s):  
Ali Bozorg ◽  
Ian D. Gates ◽  
Arindom Sen

2005 ◽  
Vol 49 (1) ◽  
pp. 380-387 ◽  
Author(s):  
Yan Q. Xiong ◽  
Julie Willard ◽  
Jagath L. Kadurugamuwa ◽  
Jun Yu ◽  
Kevin P. Francis ◽  
...  

ABSTRACT Therapeutic options for invasive Staphylococcus aureus infections have become limited due to rising antimicrobial resistance, making relevant animal model testing of new candidate agents more crucial than ever. In the present studies, a rat model of aortic infective endocarditis (IE) caused by a bioluminescently engineered, biofilm-positive S. aureus strain was used to evaluate real-time antibiotic efficacy directly. This strain was vancomycin and cefazolin susceptible but gentamicin resistant. Bioluminescence was detected and quantified daily in antibiotic-treated and control animals with IE, using a highly sensitive in vivo imaging system (IVIS). Persistent and increasing cardiac bioluminescent signals (BLS) were observed in untreated animals. Three days of vancomycin therapy caused significant reductions in both cardiac BLS (>10-fold versus control) and S. aureus densities in cardiac vegetations (P < 0.005 versus control). However, 3 days after discontinuation of vancomycin therapy, a greater than threefold increase in cardiac BLS was observed, indicating relapsing IE (which was confirmed by quantitative culture). Cefazolin resulted in modest decreases in cardiac BLS and bacterial densities. These microbiologic and cardiac BLS differences during therapy correlated with a longer time-above-MIC for vancomycin (>12 h) than for cefazolin (∼4 h). Gentamicin caused neither a reduction in cardiac S. aureus densities nor a reduction in BLS. There were significant correlations between cardiac BLS and S. aureus densities in vegetations in all treatment groups. These data suggest that bioluminescent imaging provides a substantial advance in the real-time monitoring of the efficacy of therapy of invasive S. aureus infections in live animals.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2607 ◽  
Author(s):  
Kyunghee Kim ◽  
Jeongeun Lee ◽  
Bo Moon ◽  
Ye Seo ◽  
Chan Park ◽  
...  

In this study, a portable urea sensor that monitors the urea concentration in flow conditions was fabricated. We propose an electrochemical sensor that continually measures the urea concentration of samples flowing through it at a constant flow rate in real time. For the electrochemical sensing, a porous silk fibroin membrane with immobilized urease was mounted in a polydimethylsiloxane (PDMS) sensor housing. The fabricated urea sensor elicited linear current–concentration characteristics in the clinically significant concentration range (0.1–20 mM) based on peritoneal dialysis. The sensor maintained the linear current–concentration characteristics during operation in flow conditions.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2787-2792 ◽  
Author(s):  
Viji Balasubramanian ◽  
Eric Grabowski ◽  
Alessandra Bini ◽  
Yale Nemerson

Although it is generally accepted that the initial event in coagulation and intravascular thrombus formation is the exposure of tissue factor (TF) to blood, there is still little agreement about the mechanisms of thrombus propagation and the identities of the molecular species participating in this process. In this study, we characterized the thrombotic process in real-time and under defined flow conditions to determine the relative contribution and spatial distribution of 3 components of the thrombi: circulating or blood-borne TF (cTF), fibrin, and platelets. For this purpose, we used high-sensitivity, multicolor immunofluorescence microscopy coupled with a laminar flow chamber. Freshly drawn blood, labeled with mepacrine (marker for platelets and white cells), anti-hTF1Alexa.568 (marker for tissue factor), and anti-T2G1Cy­5 (marker for fibrin) was perfused over collagen-coated glass slides at wall shear rates of 100 and 650 s−1. A motorized filter cube selector facilitated imaging every 5 seconds at 1 of 3 different wavelengths, corresponding to optimal wavelengths for the 3 markers above. Real-time video recordings obtained during each of 10 discrete experiments show rapid deposition of platelets and fibrin onto collagen-coated glass. Overlay images of fluorescent markers corresponding to platelets, fibrin, and cTF clearly demonstrate colocalization of these 3 components in growing thrombi. These data further support our earlier observations that, in addition to TF present in the vessel wall, there is a pool of TF in circulating blood that contributes to the propagation of thrombosis at a site of vascular injury.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Hervé Straub ◽  
Leo Eberl ◽  
Manfred Zinn ◽  
René M. Rossi ◽  
Katharina Maniura-Weber ◽  
...  

Abstract Background Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions. Results Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium (modified M9 minimal medium) was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium (tryptic soy broth rich medium ). However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials. Conclusion The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions.


Sign in / Sign up

Export Citation Format

Share Document