scholarly journals 1135 Photodynamic therapy against both methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa

2018 ◽  
Vol 138 (5) ◽  
pp. S193
Author(s):  
B. Katayama ◽  
T. Ozawa ◽  
S. Kuzuya ◽  
N. Ito ◽  
K. Awazu ◽  
...  
2021 ◽  
Vol 8 (6) ◽  
Author(s):  
Jalal H ◽  
◽  
Henriksen G ◽  

Community-acquired pneumonia is an acute infection of lung parenchyma which causes local and systemic inflammatory changes via cytokines. Several bacteria and viruses are responsible for this type of pneumonia, and the most common bacterial cause is Streptococcus pneumoniae. The classic symptoms are cough, fever, and pleuritic chest pain. In the Winter of 2020, a new strain of coronavirus known as SARS-CoV-2 spread throughout the world and was responsible for a global pandemic that transformed the way we live our lives. A 93-year old female presented to the hospital with respiratory distress and was found to have not only COVID-19 pneumonia but also superimposed Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa pneumonia. Following the most up-to-date guidelines, she was determined to have community-acquired pneumonia. Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa are uncommon causes of communityacquired pneumonia. She was treated with the standard of care at the time, which included vancomycin, piperacillin-tazobactam, and hydroxychloroquine. This case highlights the rarity of this specific presentation of community acquired pneumonia in regards to microbial etiology. It showcases that patients may develop certain diseases despite not having any risk factors. A major takeaway point is that apt decision making is a critical and time sensitive matter when determining whether a bacterial co-infection is present since it can affect patient outcomes. Since co-infections are relatively infrequent, antibiotic use in COVID-19 positive patients needs to be tailored accordingly. At the same time, it is crucial to keep in mind that co-infections are associated with increased severity of COVID-19 as well as poorer outcomes.


2020 ◽  
Vol 28 ◽  
Author(s):  
Priyanga Dharmaratne ◽  
Ligang Yu ◽  
Roy Chi-Hang Wong ◽  
Ben Chun-Lap Chan ◽  
Kit-Man Lau ◽  
...  

Background: We report herein the synthesis of a novel dicationic boron dipyrromethene derivative (compound 3) which is symmetrically substituted with two trimethylammonium styryl groups. Methods: The antibacterial photodynamic activity of compound 3 was determined against sixteen methicillin-resistant Staphylococcus aureus (MRSA) strains, including four ATCC type strains (ATCC 43300, ATCC BAA-42, ATCC BAA-43, and ATCC BAA-44), two mutant strains [AAC(6’)-APH(2”) and RN4220/pUL5054], and ten non-duplicate clinical strains of hospital- and communityassociated MRSA. Upon light irradiation, the minimum bactericidal concentrations of compound 3 were in the range of 1.56-50 µM against all the sixteen MRSA strains. Interestingly, compound 3 was not only more active than an analogue in which the ammonium groups are not directly connected to the pconjugated system (compound 4), but also showed significantly higher (p < 0.05) antibacterial potency than the clinically approved photosensitizer methylene blue. The skin irritation of compound 3 during topical application was tested on human 3-D skin constructs and proven to be non-irritant in vivo at concentrations below 1.250 mM. In the murine MRSA infected wound study, the colony forming unit reduction of compound 3 + PDT group showed significantly (p < 0.05) higher value (>2.5 log10) compared to other test groups except for the positive control. Conclusion: In conclusion, the present study provides a scientific basis for future development of compound 3 as a potent photosensitizer for photodynamic therapy for MRSA wound infection.


2020 ◽  
Vol 7 (10) ◽  
Author(s):  
Justin J Kim ◽  
Alison Lydecker ◽  
Rohini Davé ◽  
Jacqueline T Bork ◽  
Mary-Claire Roghmann

Abstract We identified deep diabetic foot infections by culture and conducted a case–control study examining the risk factors for moderate to severe methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PsA) diabetic foot infections. Our MRSA prevalence was lower than literature values; PsA was higher. Gangrene may be predictive of Pseudomonas infection.


Pathogens ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Majed Masadeh ◽  
Karem Alzoubi ◽  
Wesam Ahmed ◽  
Aisha Magaji

An in vitro overview of the inhibitory effects of selected fluoroquinolones against planktonic and biofilm cells of the methicillin-resistant Staphylococcus aureus (MRSA) strain American type culture collection (ATCC) 43300 and the Pseudomonas aeruginosa strain ATCC 27853 was carried out. Biofilm cells of both strains were less susceptible to the selected antibiotics than their planktonic counterparts. In addition, certain antibiotics were more effective against biofilm cells, while others performed better on the planktonic cells. Against P. aeruginosa, ciprofloxacin was the most potent on both planktonic and biofilm cells, whereas ofloxacin was the least potent on both biofilm and planktonic cells. Moxifloxacin and gatifloxacin were the most potent against both planktonic and biofilm MRSA bacteria, however, not in the same order of activity. Norfloxacin was the least active when tested against both planktonic and biofilm cells. The results of this work are expected to provide insight into the efficacy of various fluoroquinolones against MRSA and Pseudomonas aeruginosa biofilms. This study could form the basis for future clinical studies that could recommend special guidelines for the management of infections that are likely to involve bacteria in their biofilm state.


Author(s):  
Pulin Bihari Das ◽  
Monali Priyadarshini Mishra ◽  
Siba Narayan Rath

Objective: Methicillin-resistant Staphylococcus aureus (MRSA) strains have emerged independently in diverse geographic zones and MRSA and Pseudomonas aeruginosa cause surgical site infections. Nosocomial surveillance in orthopedic surgery wards of the hospital for 16 months is presented.Methods: A total of 621 wound swabs were cultured on blood and MacConkey agar plates for bacteria and Sabouraud dextrose agar for fungi.Results: From 468 bacterial colonies, 98 MRSA and 74 P. aeruginosa strains and 41 fungal strains were isolated, and fungal strains were 13 strains of Aspergillus niger, and 28 strains of Candida albicans. P. aeruginosa and S. aureus strains were susceptible to antibiotics tobramycin, ciprofloxacin, piperacillin, vancomycin, levofloxacin, and amoxyclav. Similarly, A. niger and C. albicans were susceptible to antifungals, amphotericin B (AMB), liposomal AMB, itraconazole, voriconazole, posaconazole, and caspofungin.Conclusion: Isolated MRSA strains were resistant to presently used common antibiotics, which attribute to the leading causatives of post-operative infection in orthopedic wounds, specifically.


Sign in / Sign up

Export Citation Format

Share Document