Guidelines for life extension process management in oil and gas facilities

2020 ◽  
Vol 68 ◽  
pp. 104290
Author(s):  
Nayara Nunes Ferreira ◽  
Marcelo Ramos Martins ◽  
Marco Antonio Gaya de Figueiredo ◽  
Victor Hugo Gagno
Author(s):  
Solfrid Ha˚brekke ◽  
Lars Bodsberg ◽  
Per Hokstad ◽  
Gerhard Ersdal

A large number of facilities and parts of the infrastructure on the Norwegian Continental Shelf are approaching or have exceeded their original design life. Many fields, however, have remaining recoverable oil and gas reserves which may be profitable if the field’s life is extended. From a safety point of view, the condition of systems, structures and components may not be acceptable for extended operation. Ageing and life extension have been a top priority for the Petroleum Safety Authority Norway (PSA) and PSA has asked SINTEF to conduct a study of various aspects of ageing and life extension. The paper presents main results from the study, including how to document the safety of an ageing facility and how to uphold the safety level by means of a maintenance programme balancing three aspects of ageing: 1) Material degradation, 2) Obsolescence, i.e. operations and technology being “out of date” and 3) Organisational issues. The paper presents six main steps of the life extension process and discusses important issues to consider for operators in a life extension process.


The distinctive feature of petroleum businesses is its wide scope. After crude oil or gas extraction, resulting semi-products undergo dozens of transformation stages in supply chains to reach the final customer. Combination of quantity and quality multiplied by external market factors produce price fluctuations that are challenging for world economics. In this regard process management might be carried out to improve supply chain performance and assure the maximum business predictability. However, for such large-scale organizations it requires big effort in operational analysis, process enhancement and process control via information systems which successfully support traditional management in function-oriented organizational structures. This chapter explores the developed engineering matrix that embraces potential methods and tools applicable for oil and gas industry. Additionally, it reveals industrial peculiarities and delivers case studies about Iranian and Hungarian petroleum companies.


Author(s):  
Christiane L. Machado ◽  
Sudheer Chand

The Offshore Oil and Gas Industry has converted a large number of units from trading tankers and carriers into Floating Production, Storage and Offloading units (FPSOs). Several of these have been moored offshore Brazil during the last 15 years. Following the discovery of offshore pre-salt fields some years ago, demand for FPSOs has increased, and the forecasts for productive field lives have grown. The result of these developments is the need to extend the service lives of existing FPSOs. The main aim of this study is to investigate FPSO structural response to environmental conditions and functional loads, considering the actual available tools for numerical simulations and Rule requirements, which currently are basic requirements for design review for Classification. The procedure was developed from one selected FPSO converted from a trading Very Large Crude Carrier (VLCC) tanker approximately 15 years ago and includes investigation of the impact on hull behavior comparing the motion analyses of the production unit under environmental data and software capabilities available at the period of conversion and actual performance: variances in the environmental (sea scatter diagrams) datasets; updates to Classification requirements for defining offloading conditions, environmental loads, acceptance criteria and remaining fatigue life (RFL); and incorporating the most recent gauged thickness for primary structure. The selected FPSO was evaluated according to prescriptive Rule requirements and also using finite element analysis, taking into account the previous conditions of Classification approval as well as the actual requirements and available data. Structural analysis included one global model and some local refined models to address strength, buckling and fatigue capacity of the typical portions/connections of the hull. The comparisons performed from the results of these analyses are a crucial step toward understanding the structural capacity of the FPSO at the conversion stage, its performance during the last 15 years, and its remaining service life. Differences were tabulated and evaluated so that a more precise level of uncertainty could be achieved for predicting the estimated remaining service life, and consequently, a new and dedicated approach to investigate the existing FPSO fleet is being generated.


2007 ◽  
Vol 47 (1) ◽  
pp. 301
Author(s):  
G.R. Keen ◽  
M.G. Sethi

ExxonMobil Australia Pty Ltd’s subsidiary, Esso Australia Resources Pty Ltd (ExxonMobil), and BHP Billiton jointly own and operate an LPG fractionation facility at Long Island Point, near Hastings in Victoria. This facility began operating in 1970 as part of the overall development of Gippsland oil and gas resources. The facility had a nominal design life of 30 years; however, the facility will be required to operate for many more years, given the significant gas reserves remaining in Bass Strait. A plan was developed to identify and progress plant facility upgrades to ensure continued, safe operation to life end. Nine separate projects with a total value in excess of A$250 million were developed and are now in various stages of progress. The key projects include: refrigerated LPG storage tank refurbishment, fire system upgrade, a new control room and control system, and plant emergency shutdown system upgrades. These projects focus on achieving high standards of safe operations and long-term reliability through application of advances in technology to ready the facilities for their remaining life.


Author(s):  
Junho Choi ◽  
Joseph Moo-Hyun Kim

Ocean environmental conditions, such as waves, winds, and currents, are getting harsher due to climate change. This means that oil and gas production platforms in the ocean may experience unexpectedly large environmental loads bigger than previous design loads. Also, many platforms are reaching the end of their design lives. Ensuring riser integrity is one of the most important issues for platform safety and service-life extension. Currently, monitoring sensors are deployed on risers, and structural evaluation methods are utilized to examine riser integrity. However, there are some limitations to the structural evaluation methods. Furthermore, platform operators continue to seek for more direct and cost-effective riser monitoring method due to the low price of oil. In this study, the MultiSensor Fusion (MSF) system is proposed to surmount technical and economic obstacles in real-time riser-monitoring technology. The MSF system is validated for TLP (tension-leg platform) risers by using numerical sensors and numerical-simulation tools.


Sign in / Sign up

Export Citation Format

Share Document