Effects of annealing temperature and ambient atmosphere on the structure and photoluminescence of BCNO phosphors

2013 ◽  
Vol 143 ◽  
pp. 343-348 ◽  
Author(s):  
Fang Lu ◽  
Xinghua Zhang ◽  
Zunming Lu ◽  
Xuewen Xu ◽  
Chengchun Tang
MRS Advances ◽  
2017 ◽  
Vol 2 (58-59) ◽  
pp. 3667-3672
Author(s):  
Aliaksandr Sharstniou ◽  
Stanislau Niauzorau ◽  
Eugene Chubenko ◽  
Bruno P. Azeredo ◽  
Vitaly Bondarenko

ABSTRACT Zinc oxide/silicon nanowires (ZnO/SiNWs) nanocomposites is a promising material for heterojunction solar cells. They combine the low-reflectivity of SiNWs, where photogenerated charge carriers are produced and harvested, and the high transparency of ZnO, which serves as a functional transparent conductive electrode. In this paper, we present a study of the anti-reflective properties of ZnO/SiNWs core-shell nanostructures. SiNWs were fabricated by a two-step metal-assisted chemical etching and coated with ZnO by electrochemical deposition. Particularly, the change in the specular reflectance of ZnO/SiNWs nanocomposites as a function of thermal annealing temperature under ambient atmosphere is investigated. First, it was shown that the reflectance in the wavelength range of 400-1000 nm of as-synthesized ZnO/SiNWs nanocomposites increases when compared to the bare SiNWs formed from Si wafers with resistivity of 0.3 and 12 Ω∙cm by an 0.51 % and 0.47 %, respectively. Second, it was found that annealed ZnO/SiNWs had a 0.26 % and 0.17 % lower reflectance in the wavelength range of 400-1000 nm than as-synthesized ZnO/SiNWs and yet higher than bare SiNWs. Potential causes such results are discussed in the context of existing literature.


2011 ◽  
Vol 172-174 ◽  
pp. 887-892 ◽  
Author(s):  
Koutarou Hayashi ◽  
Toshinobu Nishibata ◽  
Nobusato Kojima ◽  
Masanori Kajihara

In order to examine the decarburization behavior in the hot stamping (HS) method, the dependence of the microstructure evolution on the annealing temperature was experimentally studied using a Fe-0.21 mass% C-1.3 mass% Mn-0.2 mass% Si steel. The steel was isothermally annealed in the temperature range ofT= 773-1173 K for various times oft= 100-12800 s in an ambient atmosphere. Here, the steel possesses the ferrite (α) + cementite (θ) two-phase microstructure atT= 773-923 K, the α + austenite (γ) two-phase microstructure atT= 1013-1073 K, and the γ single-phase microstructure atT= 1093-1173 K. During annealing atT= 1013-1073 K fort= 1600 s, however, the α layer with a uniform thickness is formed at the surface of the steel due to decarburization and gradually grows into the inside. Such formation of the a layer was not clearly observed atT973 K and T1093 K. Thus, the formation of the α layer hardly occurs under the HS annealing conditions. AtT= 1033 K, the thickness of the α layer is mostly proportional to the square root of the annealing time. Such a relationship is called the parabolic relationship. Furthermore, the grain size of the α layer monotonically increases with increasing annealing time. Hence, the parabolic relationship guarantees that the growth of the α layer is controlled by volume diffusion.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
F.-R. Chen ◽  
T. L. Lee ◽  
L. J. Chen

YSi2-x thin films were grown by depositing the yttrium metal thin films on (111)Si substrate followed by a rapid thermal annealing (RTA) at 450 to 1100°C. The x value of the YSi2-x films ranges from 0 to 0.3. The (0001) plane of the YSi2-x films have an ideal zero lattice mismatch relative to (111)Si surface lattice. The YSi2 has the hexagonal AlB2 crystal structure. The orientation relationship with Si was determined from the diffraction pattern shown in figure 1(a) to be and . The diffraction pattern in figure 1(a) was taken from a specimen annealed at 500°C for 15 second. As the annealing temperature was increased to 600°C, superlattice diffraction spots appear at position as seen in figure 1(b) which may be due to vacancy ordering in the YSi2-x films. The ordered vacancies in YSi2-x form a mesh in Si plane suggested by a LEED experiment.


Author(s):  
E. I. Alessandrini ◽  
M. O. Aboelfotoh

Considerable interest has been generated in solid state reactions between thin films of near noble metals and silicon. These metals deposited on Si form numerous stable chemical compounds at low temperatures and have found applications as Schottky barrier contacts to silicon in VLSI devices. Since the very first phase that nucleates in contact with Si determines the barrier properties, the purpose of our study was to investigate the silicide formation of the near noble metals, Pd and Pt, at very thin thickness of the metal films on amorphous silicon.Films of Pd and Pt in the thickness range of 0.5nm to 20nm were made by room temperature evaporation on 40nm thick amorphous Si films, which were first deposited on 30nm thick amorphous Si3N4 membranes in a window configuration. The deposition rate was 0.1 to 0.5nm/sec and the pressure during deposition was 3 x 10 -7 Torr. The samples were annealed at temperatures in the range from 200° to 650°C in a furnace with helium purified by hot (950°C) Ti particles. Transmission electron microscopy and diffraction techniques were used to evaluate changes in structure and morphology of the phases formed as a function of metal thickness and annealing temperature.


Author(s):  
D. R. Denley

Scanning tunneling microscopy (STM) has recently been introduced as a promising tool for analyzing surface atomic structure. We have used STM for its extremely high resolution (especially the direction normal to surfaces) and its ability for imaging in ambient atmosphere. We have examined surfaces of metals, semiconductors, and molecules deposited on these materials to achieve atomic resolution in favorable cases.When the high resolution capability is coupled with digital data acquisition, it is simple to get quantitative information on surface texture. This is illustrated for the measurement of surface roughness of evaporated gold films as a function of deposition temperature and annealing time in Figure 1. These results show a clear trend for which the roughness, as well as the experimental deviance of the roughness is found to be minimal for evaporation at 300°C. It is also possible to contrast different measures of roughness.


Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


2019 ◽  
Vol 14 (5) ◽  
pp. 496-500 ◽  
Author(s):  
Chunyang Li ◽  
Xiaodi Du ◽  
Yurong Shi ◽  
Zhenling Wang

Sign in / Sign up

Export Citation Format

Share Document