Decarburization of 0.21C-1.3Mn-0.2Si Steel for Hot Stamping at Various Heating Temperatures

2011 ◽  
Vol 172-174 ◽  
pp. 887-892 ◽  
Author(s):  
Koutarou Hayashi ◽  
Toshinobu Nishibata ◽  
Nobusato Kojima ◽  
Masanori Kajihara

In order to examine the decarburization behavior in the hot stamping (HS) method, the dependence of the microstructure evolution on the annealing temperature was experimentally studied using a Fe-0.21 mass% C-1.3 mass% Mn-0.2 mass% Si steel. The steel was isothermally annealed in the temperature range ofT= 773-1173 K for various times oft= 100-12800 s in an ambient atmosphere. Here, the steel possesses the ferrite (α) + cementite (θ) two-phase microstructure atT= 773-923 K, the α + austenite (γ) two-phase microstructure atT= 1013-1073 K, and the γ single-phase microstructure atT= 1093-1173 K. During annealing atT= 1013-1073 K fort= 1600 s, however, the α layer with a uniform thickness is formed at the surface of the steel due to decarburization and gradually grows into the inside. Such formation of the a layer was not clearly observed atT973 K and T1093 K. Thus, the formation of the α layer hardly occurs under the HS annealing conditions. AtT= 1033 K, the thickness of the α layer is mostly proportional to the square root of the annealing time. Such a relationship is called the parabolic relationship. Furthermore, the grain size of the α layer monotonically increases with increasing annealing time. Hence, the parabolic relationship guarantees that the growth of the α layer is controlled by volume diffusion.

2012 ◽  
Vol 602-604 ◽  
pp. 385-389
Author(s):  
Kuan Hui Hu ◽  
Xiang Dong Liu ◽  
De Xin Tian ◽  
Guan Wen Feng ◽  
Fang Yi Sun

The effect of different annealing temperature on microstructure and properties of the hot-stamping boron steel were studied.The results show that the yield strength of the test steel is reduced with increasing annealing temperature, only at 790°C,the specimen yield strength increased slightly, and showed a significant downward trend after 790°C.The specimen tensile strength and hardness with the change of the same trend when annealing temperature changes.And through the test we can see,at 760°C ,the test steel has entered a two-phase region,the test steel gain ferrite and pearlite when it is annealed below the temperature,it is easy to appear martensite microstructure when it is annealed in the higher temperature,and lead to the strength and hardness of the rise.


1991 ◽  
Vol 229 ◽  
Author(s):  
M. Park ◽  
S. J. Krause ◽  
S. R. Wilson

AbstractThe effect of deposition temperature and the addition of Si to sputter deposited Al-Cu thin-film microstructure was studied with transmission electron microscopy. Films were studied in the as-deposited and annealed condition. The effects of thermal treatment were studied with in-situ hot stage microscopy. Al2Cu (θ) precipitated at the grain boundaries and the sublayer interface. At higher deposition temperatures, with alloy composition in single phase region (Al-1.5 wt.%Cu), Al2Cu precipitated during cooldown. At lower temperatures, in the two phase Al-0 region, Al2Cu precipitated during deposition. The addition of Si caused formation of Si precipitates and retarded Al2Cu precipitation during deposition or cooldown.


2004 ◽  
Vol 842 ◽  
Author(s):  
Takayoshi Nakano ◽  
Koutaro Hayashi ◽  
Yukichi Umakoshi ◽  
Yu-Lung Chiu ◽  
Patrick Veyssière

ABSTRACTIn Al-rich TiAl crystals, several long-period superstructures may appear depending on Al composition, annealing temperature and annealing time. Amongst these, Al5Ti3 and h-Al2Ti contain pure Al (002) layers, as in the L10 structure of the matrix, alternating with Ti (002) layers that exhibit an ordered arrangement of the Al atoms in excess. In single crystals with compositions ranging from Ti-54.7at.%Al to Ti-62.5at.%Al annealed at 1200°C, the Al5Ti3 long-period superstructure embedded in the L10 matrix develops with increasing Al concentration to finally transform fully into h-Al2Ti for Ti-62.5at.%Al. On the other hand, Al5Ti3 precipitates grow with annealing time at 500°C in Ti-58.0at.%Al.The effects of the Al5Ti3 and h-Al2Ti superstructures on slip properties of 1/2<110] ordinary dislocations are examined both at a macroscopic and a microscopic level. The CRSS for 1/2<110] ordinary slip increases with Al5Ti3 ordering depending on Al composition, or of annealing time in the case of Ti-58.0at.%Al. Dislocations with 1/2<110] Burgers vector group into fourfold configurations to avoid the trailing of extended APBs in Al5Ti3. The CRSS for slip in the <110] direction further increases with the formation of h-Al2Ti particles within the L10 matrix in Ti-62.5at.%Al. By contrast, Ti-62.5at.%Al fully transformed into Al5Ti3 exhibits a CRSS significantly lower than that of the two-phase alloy.


2019 ◽  
Vol 89 (11) ◽  
pp. 1783
Author(s):  
Р.М. Смертин ◽  
С.А. Гарахин ◽  
C.Ю. Зуев ◽  
А.Н. Нечай ◽  
Н.В. Полковников ◽  
...  

AbstractThe influence of thermal action on X-ray optics performance and structure of films and transition regions in multilayer Mo/Be mirrors optimized for a reflection maximum in the interval 11.2–11.4 nm at normal incidence has been considered. The annealing temperature reached 300°C and the annealing time was 1 and 4 h. It has been shown that after thermal annealing in vacuum for 1 h at 300°C, the reflection coefficient rises; however, when the annealing time grows to 4 h, it drops. Grains in molybdenum films become finer, and the profiles of transition regions change from exponential to linear. The period of multilayer mirrors has remained the same under all annealing conditions.


Author(s):  
Taira Okita ◽  
Junji Etoh ◽  
Mitsuyuki Sagisaka ◽  
Takashi Matsunaga ◽  
Yoshihiro Isobe

Ultrasonic tests were conducted for 304 type austenitic stainless steels with different annealing conditions and effects of carbide precipitate formation on the velocity changes were evaluated. The velocity increased with higher annealing temperature and/or longer annealing time. SEM observations indicated that carbide precipitates were formed mainly on grain boundaries. Results show that it is not the precipitation itself but the removal of carbon from the matrix that determines the velocity change.


2017 ◽  
Vol 36 (5) ◽  
pp. 485-493
Author(s):  
Xiuwen Zhou ◽  
Xudong Liu ◽  
Yidong Qi ◽  
Weidong Wu

AbstractNi80Cr20 (Ni20Cr, wt%) micro-wires were fabricated by the cold-drawing method with single die. Abnormal engineering strains were approximately 17.3–46.6 % for each pass. The relationship between mechanical properties and microstructures of Ni20Cr micro-wires were investigated under different engineering strains and annealing conditions. Experiment results indicate that the as-drawn NiCr micro-wires present obviously brittle fractures. The ultimate tensile strength (UTS) significantly increases from 781 to 1,147 MPa and the elongation decreases from 17.2 % to 1 % with engineering strains increasing. The deformed microstructures of Ni20Cr micro-wire were analyzed in detail including two-phase (solid solution/amorphous phase), edge dislocations and twins. With the annealing temperature increasing, specimens had experienced three stages and their mechanical properties were improved. After annealing at 890 °C (with 6.5 g stress) for 7.3 s in N2, the Ni20Cr micro-wires benefited for the second drawing pass. The results are very importance in fabricating Ni20Cr micro-wire with the diameter from 25 to 10 μm.


Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


Sign in / Sign up

Export Citation Format

Share Document