Structural Analysis of the Substrate Recognition Mechanism in O-Phosphoserine Sulfhydrylase from the Hyperthermophilic Archaeon Aeropyrum pernix K1

2012 ◽  
Vol 422 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Takashi Nakamura ◽  
Yoshito Kawai ◽  
Kohei Kunimoto ◽  
Yuka Iwasaki ◽  
Kaoru Nishii ◽  
...  
2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Miha Bahun ◽  
Marko Šnajder ◽  
Dušan Turk ◽  
Nataša Poklar Ulrih

ABSTRACT Pernisine is a subtilisin-like protease that was originally identified in the hyperthermophilic archaeon Aeropyrum pernix, which lives in extreme marine environments. Pernisine shows exceptional stability and activity due to the high-temperature conditions experienced by A. pernix. Pernisine is of interest for industrial purposes, as it is one of the few proteases that has demonstrated prion-degrading activity. Like other extracellular subtilisins, pernisine is synthesized in its inactive pro-form (pro-pernisine), which needs to undergo maturation to become proteolytically active. The maturation processes of mesophilic subtilisins have been investigated in detail; however, less is known about the maturation of their thermophilic homologs, such as pernisine. Here, we show that the structure of pro-pernisine is disordered in the absence of Ca2+ ions. In contrast to the mesophilic subtilisins, pro-pernisine requires Ca2+ ions to adopt the conformation suitable for its subsequent maturation. In addition to several Ca2+-binding sites that have been conserved from the thermostable Tk-subtilisin, pernisine has an additional insertion sequence with a Ca2+-binding motif. We demonstrate the importance of this insertion for efficient folding and stabilization of pernisine during its maturation. Moreover, analysis of the pernisine propeptide explains the high-temperature requirement for pro-pernisine maturation. Of note, the propeptide inhibits the pernisine catalytic domain more potently at high temperatures. After dissociation, the propeptide is destabilized at high temperatures only, which leads to its degradation and finally to pernisine activation. Our data provide new insights into and understanding of the thermostable subtilisin autoactivation mechanism. IMPORTANCE Enzymes from thermophilic organisms are of particular importance for use in industrial applications, due to their exceptional stability and activity. Pernisine, from the hyperthermophilic archaeon Aeropyrum pernix, is a proteolytic enzyme that can degrade infective prion proteins and thus has a potential use for disinfection of prion-contaminated surfaces. Like other subtilisin-like proteases, pernisine needs to mature through an autocatalytic process to become an active protease. In the present study, we address the maturation of pernisine and show that the process is regulated specifically at high temperatures by the propeptide. Furthermore, we demonstrate the importance of a unique Ca2+-binding insertion for stabilization of mature pernisine. Our results provide a novel understanding of thermostable subtilisin autoactivation, which might advance the development of these enzymes for commercial use.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ryo Yoshida ◽  
Hisashi Hemmi

Abstract Archaea produce unique membrane lipids, which possess two fully saturated isoprenoid chains linked to the glycerol moiety via ether bonds. The isoprenoid chain length of archaeal membrane lipids is believed to be important for some archaea to thrive in extreme environments because the hyperthermophilic archaeon Aeropyrum pernix and some halophilic archaea synthesize extended C25,C25-archaeal diether-type membrane lipids, which have isoprenoid chains that are longer than those of typical C20,C20-diether lipids. Natural archaeal diether lipids possessing longer C30 or C35 isoprenoid chains, however, have yet to be isolated. In the present study, we attempted to synthesize such hyperextended archaeal membrane lipids. We investigated the substrate preference of the enzyme sn-2,3-(digeranylfarnesyl)glycerol-1-phosphate synthase from A. pernix, which catalyzes the transfer of the second C25 isoprenoid chain to the glycerol moiety in the biosynthetic pathway of C25,C25-archaeal membrane lipids. The enzyme was shown to accept sn-3-hexaprenylglycerol-1-phosphate, which has a C30 isoprenoid chain, as a prenyl acceptor substrate to synthesize sn-2-geranylfarnesyl-3-hexaprenylglycerol-1-phosphate, a supposed precursor for hyperextended C25,C30-archaeal membrane lipids. Furthermore, we constructed an artificial biosynthetic pathway by introducing 4 archaeal genes and 1 gene from Bacillus subtilis in the cells of Escherichia coli, which enabled the E. coli strain to produce hyperextended C25,C30-archaeal membrane lipids, which have never been reported so far.


2020 ◽  
pp. jbc.RA120.015305
Author(s):  
Renuka Kadirvelraj ◽  
Jeong-Yeh Yang ◽  
Hyun Woo Kim ◽  
Justin H. Sanders ◽  
Kelley W. Moremen ◽  
...  

Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galβ(1,4)-GlcNAcβ(1,3)-]n glycan extensions. They are found on both N- and O­-glycoproteins and glycolipids, and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and β1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31, but little is known about the structure, substrate recognition, or catalysis by family members. Here we report the structures of human B3GNT2 in complex with UDP:Mg2+, and in complex with both UDP:Mg2+ and a glycan acceptor, lacto-N-neotetraose. The B3GNT2 structure conserves the GT-A fold and the DxD motif that coordinates a Mg2+ ion for binding the UDP-GlcNAc sugar donor. The acceptor complex shows interactions with only the terminal Galβ(1,4)-GlcNAcβ(1,3)- disaccharide unit, which likely explains the specificity for both N- and O-glycan acceptors. Modeling of the UDP-GlcNAc donor supports a direct displacement inverting catalytic mechanism. Comparative structural analysis indicates that nucleotide sugar donors for GT-A fold glycosyltransferases bind in similar positions and conformations without conserving interacting residues, even for enzymes that use the same donor substrate. In contrast, the B3GNT2 acceptor binding site is consistent with prior models suggesting that the evolution of acceptor specificity involves loops inserted into the stable GT-A fold. These observations support the hypothesis that GT-A fold glycosyltransferases employ co-evolving donor, acceptor, and catalytic subsite modules as templates to achieve the complex diversity of glycan linkages in biological systems.


2019 ◽  
Vol 8 (1) ◽  
pp. 15-23
Author(s):  
Takashi Nakamura ◽  
Emi Takeda ◽  
Tomoko Kiryu ◽  
Kentaro Mori ◽  
Miyu Ohori ◽  
...  

Background: O-phospho-L-serine sulfhydrylase from the hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) is thermostable and tolerant to organic solvents. It can produce nonnatural amino acids in addition to L-cysteine. Objective: We aimed to obtain higher amounts of ApOPSS compared to those reported with previous methods for the convenience of research and for industrial production of L-cysteine and non-natural amino acids. Method: We performed codon optimization of cysO that encodes ApOPSS, for optimal expression in Escherichia coli. We then examined combinations of conditions such as the host strain, plasmid, culture medium, and isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration to improve ApOPSS yield. Results and Discussion: E. coli strain Rosetta (DE3) harboring the expression plasmid pQE-80L with the codon-optimized cysO was cultured in Terrific broth with 0.01 mM IPTG at 37°C for 48 h to yield a 10-times higher amount of purified ApOPSS (650 mg·L-1) compared to that obtained by the conventional method (64 mg·L-1). We found that the optimal culture conditions along with codon optimization were essential for the increased ApOPSS production. The expressed ApOPSS had a 6-histidine tag at the N-terminal, which did not affect its activity. This method may facilitate the industrial production of cysteine and non-natural amino acids using ApOPSS. Conclusion: We conclude that these results could be used in applied research on enzymatic production of L-cysteine in E. coli, large scale production of non-natural amino acids, an enzymatic reaction in organic solvent, and environmental remediation by sulfur removal.


2008 ◽  
Vol 375 (3) ◽  
pp. 708-719 ◽  
Author(s):  
Yue Xu ◽  
Yoshitaka Nakajima ◽  
Kiyoshi Ito ◽  
Heng Zheng ◽  
Hiroshi Oyama ◽  
...  

2019 ◽  
Vol 93 (12) ◽  
Author(s):  
Jiyao Chen ◽  
Dang Wang ◽  
Zheng Sun ◽  
Li Gao ◽  
Xinyu Zhu ◽  
...  

ABSTRACTEquine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the familyArteriviridaeand pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-β) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-β production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-β production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-β transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-β-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCEThe arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro. In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Sign in / Sign up

Export Citation Format

Share Document