scholarly journals Coupled annealing temperature and layer thickness effect on strengthening mechanisms of Ti/Ni multilayer thin films

2016 ◽  
Vol 88 ◽  
pp. 72-82 ◽  
Author(s):  
Zhou Yang ◽  
Junlan Wang
1993 ◽  
Vol 321 ◽  
Author(s):  
L. T. Shi ◽  
E. J. M. O'Sullivan

ABSTRACTIn order to understand thickness and interfacial effects on the crystallization kinetics of amorphous solids, Ni(P) thin films electrolessly deposited on Cu seed layers were annealed at constant heating rates or at constant temperatures in a DSC to obtain activation energies andAvrami exponents. It was found that the activation energy of crystallization in Ni(P) changes asa function of sample thickness when the sample thickness is less than 1.0 μm. Furthermore, the Avrami exponent was found to change not only as a function of thickness but also as a function of annealing temperature.


Langmuir ◽  
2008 ◽  
Vol 24 (22) ◽  
pp. 13127-13131 ◽  
Author(s):  
Jeremy S. Treger ◽  
Vincent Y. Ma ◽  
Yuan Gao ◽  
Chun-Chih Wang ◽  
Seaho Jeon ◽  
...  

2014 ◽  
Vol 488-489 ◽  
pp. 174-177
Author(s):  
Rui Xu ◽  
Lai Sen Wang ◽  
Xiao Long Liu ◽  
Meng Lei ◽  
Qing Luo ◽  
...  

In this research, a series of [Fe80Ni20-O/NiZn-ferritn multilayer thin films with different insulation layer thickness were prepared by magnetron sputtering at room temperature. The high frequency soft magnetic properties of [Fe80Ni20-O/NiZn-ferritn multilayer thin films were investigated. It was found that the in-plane magnetic anisotropy field (Hk) and saturation magnetizations (4πMs) can be adjusted by changing the insulation layer thickness, and the optimal Hk and 4πMs can be obtained as the insulation layer thickness of 2.5 nm. The adjustment of insulation layer thickness is essential to obtain low coercivity (Hc) and high permeability (μ) of the multilayer thin films. The measured resistivity (ρ) of [Fe80Ni20-O/NiZn-ferritn multilayer thin films was increased from 211 to 448 μΩcm with increasing the insulation layer thickness.


2012 ◽  
Vol 60 (6-7) ◽  
pp. 2625-2636 ◽  
Author(s):  
John S. Carpenter ◽  
Amit Misra ◽  
Peter M. Anderson

2011 ◽  
Vol 681 ◽  
pp. 139-144 ◽  
Author(s):  
Renaud Vayrette ◽  
Christian Rivero ◽  
Sylvain Blayac ◽  
Karim Inal

In this work, coupled effects of thickness and annealing temperature on both microstructure and residual stress of electroplated copper thin films are studied. Microstructure is investigated by Electron Backscattered Diffraction (EBSD) and residual stress is estimated from samples curvature. All films exhibit highly twinned grains. Except for several microns films, median crystallite size grows with both film thickness and annealing temperature. Concerning residual stress, it decreases, first as the increase of film thickness, and secondly as the decrease of annealing temperature. The comparison between experiments and stress models demonstrates that the root mechanisms of residual stress generation change with annealing temperature. As well as annealing temperature, film thickness determines the level of residual stress through control of microstructure. Furthermore, EBSD investigations confirmed that the relevant microstructural length to define mechanical properties of thin copper films is the median crystallite size.


1992 ◽  
Vol 260 ◽  
Author(s):  
B. Arcof ◽  
L. A. Clevenger ◽  
S. P. Murarka ◽  
J. M. E. Harper ◽  
C. Cabrai

ABSTRACTDifferential scanning calorimetry (DSC) has been used to study the temperatures, kinetics and phase formation mechanisms in Cu/Mg multilayer thin films. When the Cu:Mg layer thickness ratio was 1:4, CuMg2 was the only phase that formed. Cu/Mg films with a layer thickness ratio of 1:1 first form CuMg2 at 215°C with an activation energy of 1.0 ± 0.04 eV and then Cu2Mg at 380°C with an activation energy of 0.73 ± 0.04 eV. The temperatures at which the two phases form decrease as the layer thicknesses decrease due to the shorter reaction times needed in thinner films. The constant scan rate DSC data from films with a layer thickness ratio of 1:1 show three exothermic peaks. The first peak is extremely sharp and results from the formation of isolated nuclei of CuMg2 at the Cu/Mg interface. The formation of CuMg2 is thus shown to be nucleation controlled. The second peak is a growth peak due to the heat released during the growth of CuMg2. The third peak corresponds to the formation and growth of Cu2Mg.


2011 ◽  
Vol 1368 ◽  
Author(s):  
Santosh K. Sahoo ◽  
D. Misra ◽  
D. C. Agrawal ◽  
Y. N. Mohapatra

ABSTRACTRecently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [BaxSr1-xTiO3, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO2 layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO2/BST multilayer structure is studied. The multilayer Ba0.8Sr0.2TiO3/ZrO2/Ba0.8Sr0.2TiO3 film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO2 layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO2 layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO2 layer thickness.


Sign in / Sign up

Export Citation Format

Share Document