Effects of ball milling on the densification behavior, microstructure, and mechanical properties of TiB2–SiC ceramics

Author(s):  
Wenchao Guo ◽  
Qianglong He ◽  
Aiyang Wang ◽  
Tian Tian ◽  
Chun Liu ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2224 ◽  
Author(s):  
Minai Zhang ◽  
Zhun Cheng ◽  
Jingmao Li ◽  
Shengguan Qu ◽  
Xiaoqiang Li

In this paper, WC-10Ni3Al cemented carbides were prepared by the powder metallurgy method, and the effects of ball-milling powders with two different organic solvents on the microstructure and mechanical properties of cemented carbides were studied. We show that the oxygen in the organic solvent can be absorbed into the mixed powders by ball-milling when ethanol (CH3CH2OH) is used as a ball-milling suspension. This oxygen leads to the formation of α-Al2O3 during sintering, which improves the fracture toughness, due to crack deflection and bridging, while the formation of η-phase (Ni3W3C) inhibits the grain growth and increases the hardness. Alternatively, samples milled using cyclohexane (C6H12) showed grain growth during processing, which led to a decrease in hardness. Therefore, the increase of oxygen content from using organic solvents during milling improves the properties of WC-Ni3Al composites. The growth of WC grains can be inhibited and the hardness can be improved without loss of toughness by self-generating α-Al2O3 and η-phase (Ni3W3C).


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1926 ◽  
Author(s):  
Lei Zhang ◽  
Zhifu Huang ◽  
Yangzhen Liu ◽  
Yupeng Shen ◽  
Kemin Li ◽  
...  

Mo2NiB2-Ni cermets have been extensively investigated due to their outstanding properties. However, studies have not systematically examined the effect of the powder milling process on the cermets. In this study, Mo, Ni, and B raw powders were subjected to mechanical ball milling from 1 h to 15 h. XRD patterns of the milled powders confirmed that a new phase was not observed at milling times of 1 h to 15 h. With the increase in the mechanical ball milling time from 1 h to 11 h, raw powders were crushed to small fragments, in addition to a more uniform distribution, and with the increase in the mechanical ball milling time to greater than 11 h, milled powders changed slightly. Mo2NiB2-Ni cermets were fabricated by reaction boronizing sintering using the milled powders at different ball milling times. The milling time significantly affected the microstructure and mechanical properties of Mo2NiB2-Ni cermets. Moreover, the Mo2NiB2 cermet powder subjected to a milling time of 11 h exhibited the finest crystal size and the maximum volume fraction of the Mo2NiB2 hard phase. Furthermore, the cermets with a milling time of 11 h exhibited a maximum hardness and bending strength of 87.6 HRA and 1367.3 MPa, respectively.


2010 ◽  
Vol 65 ◽  
pp. 78-85 ◽  
Author(s):  
Peter Tatarko ◽  
Štefánia Lojanová ◽  
Zdeněk Chlup ◽  
Ján Dusza ◽  
Pavol Šajgalík

Microstructure and mechanical properties of Si3N4 and Si3N4 + SiC nanocomposites sintered with rare-earth oxide additives (La2O3, Y2O3, Yb2O3 and Lu2O3) have been investigated. The composites exhibited smaller grain diameter compared to that of monolithic materials. The aspect ratio of β-Si3N4 grains increased with a decreasing ionic radius of rare-earth elements in the Si3N4 monoliths as well as in the Si3N4-SiC nanocomposites. The hardness of both systems increased with a decreasing ionic radius of rare-earth element. The fracture toughness of the materials with coarser microstructure and higher aspect ratio was higher due to the more frequent toughening mechanisms. No significant difference between strength values of monoliths and composites was observed and the strength in the composites was determined mainly by the present processing flaws. Significantly improved creep resistance was observed in the case of composites and for materials with smaller ionic radius of RE3+.


Author(s):  
D. H. A. Besisa ◽  
Z. I. Zaki ◽  
A. M. M. Amin ◽  
Y. M. Z. Ahmed ◽  
E. M. M. Ewais

In attempts to attain a SHS synthesized TiC‒Al2O3 composite with high density, homogenous microstructure and extra mechanical properties for using in aggressive media, addition of different reinforcements have to be studied and inspected. In this work, ductile nickel metal powder with different content (5‒20 wt. %) and 1 mole fraction dilution of alumina and zirconia with and without Ni addition are introduced to TiC‒Al2O3 ceramic and synthesized by combined self-propagating high temperature synthesis (SHS) and direct consolidation (DC) technique. The influence of nickel wt. % and dilution with zirconia and alumina on the phase composition, densification behavior, microstructure and mechanical properties of SHS synthesized TiC‒Al2O3 composite has been investigated and analyzed. Results revealed that, addition of 5 wt. % Ni gave the best densification behavior, microstructure and mechanical properties with exact formation of the target composite of TiC‒Al2O3. However, increasing Ni content higher than 5 wt % and dilution with zirconia and alumina led to disturbing the chemical reactions between the starting precursors, drooping and deterioration in density, microstructure and mechanical properties. Accordingly, this study suggests the addition of 5 wt. % Ni for a highly dense TiC‒Al2O3 composite with homogenized morphology and unparalleled mechanical properties. Moreover, the different investigated characteristics of the produced composites nominate it strongly to be used successfully in aggressive and tribological applications.


2010 ◽  
Vol 434-435 ◽  
pp. 189-192
Author(s):  
Yong Zhang ◽  
Ping Hu ◽  
Xing Hong Zhang

The influence of hot pressing temperature and SiC content on the microstructure and mechanical properties of ZrB2-SiC ceramics was investigated. ZrB2 containing 20 volume percent SiC were prepared by hot pressing at 1850, 1900 and 1950°C for 60 min. Fully dense ceramic was obtained after hot pressing at temperature of 1950°C. In addition, the materials with SiC content of 0, 10vol.%, 15 vol.%, 20 vol.% and 30 vol.% hot pressed at 1950°C were also investigated. Results showed that the grain size of the ZrB2 significantly reduced on adding 10vol.% SiC and then decreased slightly with further increasing SiC content, whereas the grain size of SiC exhibited a opposite trend. The flexural strength of ZrB2-SiC ceramics remarkedly increased on adding 10vol.% SiC due to the significant decrease of ZrB2 particle size and then slightly increased with increasing SiC content up to 20vol.%. However, further increasing SiC content led to a reduction of the flexural strength.


2010 ◽  
Vol 434-435 ◽  
pp. 185-188 ◽  
Author(s):  
Xin Sun ◽  
Xing Hong Zhang ◽  
Zhi Wang ◽  
Wen Bo Han ◽  
Chang Qing Hong

Abstract. ZrB2-SiC ultra-high temperature ceramics (UHTCs) was hot-pressed at a temperature of 1900°C with the addition of carbon black as a reinforcing phase. Microstructure and mechanical properties were investigated. Analysis revealed that the amount of carbon black had a significant influence on the sinterability and mechanical properties of ZrB2-SiC ceramics. When a small amount ( < 10 vol.%) of carbon black was introduced, it may react with oxide impurities (i.e. ZrO2, B2O3 and SiO2) present on the surface of the starting powder, thus promote the densification and grain refining of ZrB2-SiC ceramics. As a result, the mechanical properties including flexural strength and fracture toughness were improved. However, with the further adoption of carbon black, mechanical properties were not improved much, which could be attributed to the redundant phase at grain boundaries. The results presented here point to a potential method for improving densification, microstructure and mechanical properties of ZrB2-based ceramic composites.


Sign in / Sign up

Export Citation Format

Share Document