High-performance and broadband photodetection of bicrystalline (GaN)1-(ZnO) solid solution nanowires via crystal defect engineering

2021 ◽  
Vol 85 ◽  
pp. 255-262
Author(s):  
Zongyi Ma ◽  
Gang Li ◽  
Xinglai Zhang ◽  
Jing Li ◽  
Cai Zhang ◽  
...  
2021 ◽  
pp. 100432
Author(s):  
Can Yang ◽  
Xian Liu ◽  
Chunlin Teng ◽  
Xiaohong Cheng ◽  
Fei Liang ◽  
...  

2021 ◽  
Author(s):  
Jintao Hong ◽  
Fengyuan Zhang ◽  
Zheng Liu ◽  
Jie Jiang ◽  
Zhangting Wu ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 878 ◽  
Author(s):  
Qing Wang ◽  
Zhen Li ◽  
Shujie Pang ◽  
Xiaona Li ◽  
Chuang Dong ◽  
...  

High-performance conventional engineering materials (including Al alloys, Mg alloys, Cu alloys, stainless steels, Ni superalloys, etc.) and newly-developed high entropy alloys are all compositionally-complex alloys (CCAs). In these CCA systems, the second-phase particles are generally precipitated in their solid-solution matrix, in which the precipitates are diverse and can result in different strengthening effects. The present work aims at generalizing the precipitation behavior and precipitation strengthening in CCAs comprehensively. First of all, the morphology evolution of second-phase particles and precipitation strengthening mechanisms are introduced. Then, the precipitation behaviors in diverse CCA systems are illustrated, especially the coherent precipitation. The relationship between the particle morphology and strengthening effectiveness is discussed. It is addressed that the challenge in the future is to design the stable coherent microstructure in different solid-solution matrices, which will be the most effective approach for the enhancement of alloy strength.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Yin ◽  
Peng He ◽  
Ruiqing Cheng ◽  
Feng Wang ◽  
Fengmei Wang ◽  
...  

Abstract Defects play a crucial role in determining electric transport properties of two-dimensional transition metal dichalcogenides. In particular, defect-induced deep traps have been demonstrated to possess the ability to capture carriers. However, due to their poor stability and controllability, most studies focus on eliminating this trap effect, and little consideration was devoted to the applications of their inherent capabilities on electronics. Here, we report the realization of robust trap effect, which can capture carriers and store them steadily, in two-dimensional MoS2xSe2(1-x) via synergistic effect of sulphur vacancies and isoelectronic selenium atoms. As a result, infrared detection with very high photoresponsivity (2.4 × 105 A W−1) and photoswitching ratio (~108), as well as nonvolatile infrared memory with high program/erase ratio (~108) and fast switching time, are achieved just based on an individual flake. This demonstration of defect engineering opens up an avenue for achieving high-performance infrared detector and memory.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Jiang ◽  
Tao Xu ◽  
Junpeng Lu ◽  
Litao Sun ◽  
Zhenhua Ni

Two-dimensional (2D) materials have attracted increasing interests in the last decade. The ultrathin feature of 2D materials makes them promising building blocks for next-generation electronic and optoelectronic devices. With reducing dimensionality from 3D to 2D, the inevitable defects will play more important roles in determining the properties of materials. In order to maximize the functionality of 2D materials, deep understanding and precise manipulation of the defects are indispensable. In the recent years, increasing research efforts have been made on the observation, understanding, manipulation, and control of defects in 2D materials. Here, we summarize the recent research progress of defect engineering on 2D materials. The defect engineering triggered by electron beam (e-beam), plasma, chemical treatment, and so forth is comprehensively reviewed. Firstly, e-beam irradiation-induced defect evolution, structural transformation, and novel structure fabrication are introduced. With the assistance of a high-resolution electron microscope, the dynamics of defect engineering can be visualized in situ. Subsequently, defect engineering employed to improve the performance of 2D devices by means of other methods of plasma, chemical, and ozone treatments is reviewed. At last, the challenges and opportunities of defect engineering on promoting the development of 2D materials are discussed. Through this review, we aim to build a correlation between defects and properties of 2D materials to support the design and optimization of high-performance electronic and optoelectronic devices.


2006 ◽  
Vol 980 ◽  
Author(s):  
Kazuhiro Ishikawa ◽  
Naoshi Kasagami ◽  
Tomoyuki Takano ◽  
Kiyoshi Aoki

AbstractIn order to develop non-Pd based high performance hydrogen permeation alloys, microstructure, crystal structure and hydrogen permeability of duplex phase M-ZrNi (M=V and Ta) alloys were investigated using a scanning electron microscope, an X-ray diffractometer and a gas flow meter. These results were compared with those of Nb-ZrNi ones which have been previously published. The hydrogen permeation was impossible in the V-ZrNi alloys, because they were brittle in the as-cast state. On the other hand, duplex phase alloys consisting of the bcc-(Ta, Zr) solid solution and the orthorhombic ZrNi (Cmcm) intermetallic compound were formed and hydrogen permeable in the Ta-ZrNi system. The Ta40Zr30Ni30 alloy shows the highest value of hydrogen permeability of 4.1×10-8 [molH2m-1s-1Pa-0.5] at 673 K, which is three times higher than that of pure Pd.


2018 ◽  
Vol 6 (28) ◽  
pp. 13901-13907 ◽  
Author(s):  
Jinzhi Sheng ◽  
Chen Peng ◽  
Siwen Yan ◽  
Guobin Zhang ◽  
Yalong Jiang ◽  
...  

A new kind of VTi2.6O7.2 ultrafine nanocrystals is designed via constructing substitutional solid solution, and it exhibits improved Mg2+ and Li+ storage performances.


2020 ◽  
Vol 20 ◽  
pp. 100632
Author(s):  
Afshin Abrishamkar ◽  
Salvio Suárez–García ◽  
Semih Sevim ◽  
Alessandro Sorrenti ◽  
Ramon Pons ◽  
...  

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Chong-il Lee ◽  
Qing-Long Meng ◽  
Hiroshi Kaneko ◽  
Yutaka Tamaura

The reactivity of CeO2–Sc2O3 solid solution for solar hydrogen production via two-step water-splitting reaction has been studied in this work. The CeO2–Sc2O3 solid solution was synthesized by polymerized complex method (PCM) with various Sc content between 0 and 20 mol. %. Analysis results from online direct gas mass spectrometry (DGMS) suggest that Ce3 + formed by CeO2–Sc2O3 solid solution in the O2-releasing step could be completely oxidized by H2O to generate hydrogen and return to Ce4 + in the H2-generation step. A Ce0.97Sc0.03O1.985 generates the largest amount of O2 and H2 among present samples, and the reduction and oxidation ratios are about 9.9% (Ce) and 10% (Ce), respectively. An estimated H2-generation reaction rate is about 4 ml g−1min−1 for Ce0.97Sc0.03O1.985. This value is about seven times greater than that of Ce0.89Zr0.11O2. The high reaction rate of Ce0.97Sc0.03O1.985 makes all formed Ce3 + completely oxidized by H2O in 5 min in the H2-generation step. The reasons for high performance are discussed from the views of lattice distortion and the amount of oxygen vacancies formed in the lattice.


Sign in / Sign up

Export Citation Format

Share Document