Microstructure and Hydrogen Permeability of Duplex Phase M-ZrNi (M=V, Nb, Ta) Alloys

2006 ◽  
Vol 980 ◽  
Author(s):  
Kazuhiro Ishikawa ◽  
Naoshi Kasagami ◽  
Tomoyuki Takano ◽  
Kiyoshi Aoki

AbstractIn order to develop non-Pd based high performance hydrogen permeation alloys, microstructure, crystal structure and hydrogen permeability of duplex phase M-ZrNi (M=V and Ta) alloys were investigated using a scanning electron microscope, an X-ray diffractometer and a gas flow meter. These results were compared with those of Nb-ZrNi ones which have been previously published. The hydrogen permeation was impossible in the V-ZrNi alloys, because they were brittle in the as-cast state. On the other hand, duplex phase alloys consisting of the bcc-(Ta, Zr) solid solution and the orthorhombic ZrNi (Cmcm) intermetallic compound were formed and hydrogen permeable in the Ta-ZrNi system. The Ta40Zr30Ni30 alloy shows the highest value of hydrogen permeability of 4.1×10-8 [molH2m-1s-1Pa-0.5] at 673 K, which is three times higher than that of pure Pd.

2020 ◽  
Author(s):  
Yongcheng Lu ◽  
Yuanxun Li ◽  
Daming Chen ◽  
Rui Peng ◽  
Qinghui Yang ◽  
...  

Abstract In order to explore an economical functional phase alternative material for thick film resistors, the crystal structure, microstructure, and electrical properties of (1-x)LSCN + xLCNZ (x = 0.0–1.0) composite ceramics were studied through solid-state reaction experiments. The composite ceramics were characterized by x–ray diffraction, scanning electron microscopy, energy dispersive x–ray spectroscopy, and DC four–probe method. Results suggested that the main phases of LSCN and LCNZ were formed, along with a small part of impurity phases. The addition of LCNZ to LSCN decreased the electrical conductivity and changed the TCR from positive to negative. Zero TCR could be achieved around 0.6 < x < 0.8 and relatively low absolute TCR values could be obtained for the samples of 0.4 ≤ x ≤ 0.8. The ceramic of 0.6LSCN + 0.4LCNZ showed the optimal performances of conductivity = 1923 S/cm, TCR = 379.54 ppm/℃, and relative density = 95.05%.


Author(s):  
M. Fendorf ◽  
S.W. Keller ◽  
A.M. Stacy ◽  
R. Gronsky

Several new rare earth cuprates having the chemical form RxCuyOz (where R represents the rare earths La, Nd, Sm, Eu, and Gd) have recently been synthesized using a NaOH flux at 400°C. The materials are polycrystalline, and contain varying amounts of R2CuO4 and CuO. During subsequent susceptibility measurements using a SQUID magnetometer, it was found that the Gd material orders antiferromagnetically at approximately 14K, while the other compounds become ferromagnetic between 18K and 28K. Treatment of the powders with 12M HC1 for several minutes dissolves the impurity R2CuO4 and CuO phases, thus facilitating efforts to determine the composition and crystal structure of the new ferromagnetic and antiferromagnetic cuprates. Details of synthesis and magnetic behavior of these materials are to be published elsewhere. In this study, a first attempt is made to characterize the Eu and Gd materials.Energy dispersive x-ray analysis carried out during scanning electron microscopy work indicates that the R:Cu ratio in the Gd material is 1:1.70 (close to 3:5) and that in the Eu material is 1:1.96 (close to 1:2).


Nukleonika ◽  
2017 ◽  
Vol 62 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Agata Stoch ◽  
Jan Maurin ◽  
Paweł Stoch ◽  
Jan Kulawik ◽  
Dorota Szwagierczak

Abstract Multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5)O3 solid solution is a material that exhibits ferroelectric and antiferromagnetic orderings in ambient temperature. The solid solution was obtained as a result of a conventional reaction in a solid state. The obtained material is a dense, fine-grained sinter whose surface was observed by scanning electron microscopy (SEM) and stoichiometry was confirmed by energy dispersive X-ray spectroscopic (EDS) analysis. According to the X-ray powder diffraction (XRD) measurements, the main phase is R3c space group with admixture of Pm-3m regular phase. Small contribution of pyrochlore-like phase was also observed. Mössbauer spectroscopy suggested random distribution of Fe3+/Ta5+ cations in the B sites of ABO3 compound. Reduction of the magnetic hyperfine field with an increase in the substitution of Ta5+ in Fe3+ neighbourhood was also observed.


2020 ◽  
Vol 990 ◽  
pp. 144-148
Author(s):  
Suphada Srilai ◽  
Worapak Tanwongwal ◽  
Kobchai Onpecth ◽  
Thanapat Wongkitikun ◽  
Kollayut Panpiemrasda ◽  
...  

Zeolite X were successfully synthesized from bentonite from Lopburi province, in Thailand using the two-step of hydrothermal method under optimum condition without calcination. The first step of hydrothermal were obtained at 200 °C for 3 h to remove unreacted impurity minerals such as quartz and muscovite. The secondary step of hydrothermal were obtained at 90 °C for 120 h for synthesis of zeolite X. The characterization of zeolite X were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared spectroscopy (FT-IR), respectively. The crystal structure of product was determined as zeolite X by XRD. The morphology of SEM images for zeolite X is octahedral shape. FTIR spectra are in accordance with the other characterization results.


2017 ◽  
Vol 1142 ◽  
pp. 14-18 ◽  
Author(s):  
Shi Qian Zhao ◽  
Lei Ma ◽  
Liang Zhou ◽  
Tao Liu ◽  
Yong Bin Guo

The crystal structure of GdFeMn alloy has been investigated by using X-ray powder diffraction (XRD) followed by Rietveld refinement technique, differential thermal analysis (DTA) and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) techniques. XRD results showed that annealed GdFeMn alloy was a single phase of Gd6(Fe0.5Mn0.5)23 compound, with Th6Mn23-structure. SEM/EDS results and Rietveld refinement revealed that GdFeMn alloy was not really a new ternary compound as reported, but a solid solution Gd6(Fe0.5Mn0.5)23 which was only a point between Gd6Fe23 and Gd6Mn23. It was also found from DTA measurement that a reaction, Gd (Fe0.5Mn0.5)2 → liquid (rich Gd) + Gd6(Fe0.5Mn0.5)23, had taken place above 650.81 oC, and the educed Gd existed in educed part of GdFeMn sample. The results demonstrated the real structure of the GdFeMn compound as reported was Gd6(Fe0.5Mn0.5)23 compound.


2012 ◽  
Vol 194 ◽  
pp. 21-25 ◽  
Author(s):  
Margarida S. Henriques ◽  
Thomas Malnoe ◽  
Olivier Tougait ◽  
Rui Vilar ◽  
Antonio Pereira Gonçalves

A systematic study on the ternary uranium-iron-antimony was made at 700 and 750°C through powder X-ray diffraction and Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry. The assessed sections confirmed the existence and crystal structure of the binary intermetallic compounds as well as the ternary phase UFeSb2. Moreover it was found that UFeSb2 is part of a solid solution, UFe1-xSb2, stable for 193Fe3-xSb4, crystallizing in the cubic type Y3Au3Sb4 and stable for 22


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Author(s):  
Ivan Saenko ◽  
O. Fabrichnaya

AbstractThermodynamic parameters were assessed for the MgO–FeOx system and combined with already available descriptions of ZrO2-FeOx and ZrO2-MgO systems to calculate preliminary phase diagrams for planning experimental investigations. Samples of selected compositions were heat treated at 1523, 1673 and 1873 K and characterized using x-ray and scanning electron microscopy combined with energy dispersive x-ray spectroscopy (SEM/EDX). Experiments indicated extension of cubic ZrO2 solid solution into the ternary system at 1873 K (75 mol.% ZrO2, 10 mol.% FeOx and 15 mol.% MgO) and limited solubility of 4 mol.% ZrO2 in spinel phase. Based on the obtained results thermodynamic parameters of C-ZrO2 and spinel phase were optimized.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


Sign in / Sign up

Export Citation Format

Share Document