Invasion pathways and lag times in the spread of Callosciurus erythraeus introduced into Argentina

2020 ◽  
Vol 58 ◽  
pp. 125899
Author(s):  
M. Laura Guichón ◽  
Mariela Borgnia ◽  
A. Cecilia Gozzi ◽  
Verónica V. Benitez
1987 ◽  
Vol 57 (02) ◽  
pp. 222-225 ◽  
Author(s):  
A H Soberay ◽  
M C Herzberg ◽  
J D Rudney ◽  
H K Nieuwenhuis ◽  
J J Sixma ◽  
...  

SummaryThe ability of endocarditis and dental strains of Streptococcus sanguis to induce platelet aggregation in plasma (PRP) from normal subjects were examined and compared to responses of PRP with known platelet membrane glycoprotein (GP) and response defects. S. sanguis strains differed in their ability to induce normal PRPs to aggregate. Strains that induced PRP aggregation in more than 60% of donors were significantly faster agonists (mean lag times to onset of aggregation less than 6 min) than those strains inducing response in PRPs of fewer than 60% of donors.Platelets from patients with Bernard-Soulier syndrome aggregated in response to strains of S. sanguis. In contrast, platelets from patients with Glanzmann’s thrombasthenia and from a patient with a specific defect in response to collagen were unresponsive to S. sanguis. These observations show that GPIb and V are not essential, but GPIIb-IIIa and GPIa are important in the platelet response mechanism to S. sanguis. Indeed, the data suggests that the platelet interaction mechanisms of S. sanguis and collagen may be similar.


2019 ◽  
Author(s):  
Mar�a Laura Guich�n ◽  
Ver�nica Ben�tez ◽  
Mariela Borgnia ◽  
Cecilia Gozzi ◽  
Gustavo Aprile ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. W. McDowell ◽  
Z. P. Simpson ◽  
A. G. Ausseil ◽  
Z. Etheridge ◽  
R. Law

AbstractUnderstanding the lag time between land management and impacts on riverine nitrate–nitrogen (N) loads is critical to understand when action to mitigate nitrate–N leaching losses from the soil profile may start improving water quality. These lags occur due to leaching of nitrate–N through the subsurface (soil and groundwater). Actions to mitigate nitrate–N losses have been mandated in New Zealand policy to start showing improvements in water quality within five years. We estimated annual rates of nitrate–N leaching and annual nitrate–N loads for 77 river catchments from 1990 to 2018. Lag times between these losses and riverine loads were determined for 34 catchments but could not be determined in other catchments because they exhibited little change in nitrate–N leaching losses or loads. Lag times varied from 1 to 12 years according to factors like catchment size (Strahler stream order and altitude) and slope. For eight catchments where additional isotope and modelling data were available, the mean transit time for surface water at baseflow to pass through the catchment was on average 2.1 years less than, and never greater than, the mean lag time for nitrate–N, inferring our lag time estimates were robust. The median lag time for nitrate–N across the 34 catchments was 4.5 years, meaning that nearly half of these catchments wouldn’t exhibit decreases in nitrate–N because of practice change within the five years outlined in policy.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 767
Author(s):  
He N. Xu ◽  
Joanna Floros ◽  
Lin Z. Li ◽  
Shaili Amatya

Employing the optical redox imaging technique, we previously identified a significant redox shift of nicotinamide adenine dinucleotide (NAD and the reduced form NADH) in freshly isolated alveolar macrophages (AM) from ozone-exposed mice. The goal here was twofold: (a) to determine the NAD(H) redox shift in cryopreserved AM isolated from ozone-exposed mice and (b) to investigate whether there is a difference in the redox status between cryopreserved and freshly isolated AM. We found: (i) AM from ozone-exposed mice were in a more oxidized redox state compared to that from filtered air (FA)-exposed mice, consistent with the results obtained from freshly isolated mouse AM; (ii) under FA exposure, there was no significant NAD(H) redox difference between fresh AM that had been placed on ice for 2.5 h and cryopreserved AM; however, under ozone exposure, fresh AM were more oxidized than cryopreserved AM; (iii) via the use of nutrient starvation and replenishment and H2O2-induced oxidative stress of an AM cell line, we showed that this redox difference between cryopreserved and freshly isolated AM is likely the result of the double “hit”, i.e., the ozone-induced oxidative stress plus nutrient starvation that prevented freshly isolated AM from a full recovery after being on ice for a prolonged time period. The cryopreservation technique we developed eliminates/minimizes the effects of oxidative stress and nutrient starvation on cells. This method can be adopted to preserve lung macrophages from animal models or clinical patients for further investigations.


2021 ◽  
Vol 22 (9) ◽  
pp. 5017
Author(s):  
Małgorzata Polak ◽  
Waldemar Karcz

The fungal toxin fusicoccin (FC) induces rapid cell elongation, proton extrusion and plasma membrane hyperpolarization in maize coleoptile cells. Here, these three parameters were simultaneously measured using non-abraded and non-peeled segments with the incubation medium having access to their lumen. The dose–response curve for the FC-induced growth was sigmoidal shaped with the maximum at 10−6 M over 10 h. The amplitudes of the rapid growth and proton extrusion were significantly higher for FC than those for indole-3-acetic acid (IAA). The differences between the membrane potential changes that were observed in the presence of FC and IAA relate to the permanent membrane hyperpolarization for FC and transient hyperpolarization for IAA. It was also found that the lag times of the rapid growth, proton extrusion and membrane hyperpolarization were shorter for FC compared to IAA. At 30 °C, the biphasic kinetics of the IAA-induced growth rate could be changed into a monophasic (parabolic) one, which is characteristic for FC-induced rapid growth. It has been suggested that the rates of the initial phase of the FC- and IAA-induced growth involve two common mechanisms that consist of the proton pumps and potassium channels whose contribution to the action of both effectors on the rapid growth is different.


Author(s):  
André L. B. Magalhães ◽  
Valter M. Azevedo‐Santos ◽  
Fernando Mayer Pelicice
Keyword(s):  

2021 ◽  
Vol 7 (2) ◽  
pp. 111
Author(s):  
Martin S. Mullett ◽  
Rein Drenkhan ◽  
Kalev Adamson ◽  
Piotr Boroń ◽  
Anna Lenart-Boroń ◽  
...  

Dothistroma septosporum, the primary causal agent of Dothistroma needle blight, is one of the most significant foliar pathogens of pine worldwide. Its wide host and environmental ranges have led to its global success as a pathogen and severe economic damage to pine forests in many regions. This comprehensive global population study elucidated the historical migration pathways of the pathogen to reveal the Eurasian origin of the fungus. When over 3800 isolates were examined, three major population clusters were revealed: North America, Western Europe, and Eastern Europe, with distinct subclusters in the highly diverse Eastern European cluster. Modeling of historical scenarios using approximate Bayesian computation revealed the North American cluster was derived from an ancestral population in Eurasia. The Northeastern European subcluster was shown to be ancestral to all other European clusters and subclusters. The Turkish subcluster diverged first, followed by the Central European subcluster, then the Western European cluster, which has subsequently spread to much of the Southern Hemisphere. All clusters and subclusters contained both mating-types of the fungus, indicating the potential for sexual reproduction, although asexual reproduction remained the primary mode of reproduction. The study strongly suggests the native range of D. septosporum to be in Eastern Europe (i.e., the Baltic and Western Russia) and Western Asia.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Qiuyun Yuan ◽  
Wanchun Yang ◽  
Shuxin Zhang ◽  
Tengfei Li ◽  
Mingrong Zuo ◽  
...  

Abstract Background Malignant glioma exerts a metabolic shift from oxidative phosphorylation (OXPHOs) to aerobic glycolysis, with suppressed mitochondrial functions. This phenomenon offers a proliferation advantage to tumor cells and decrease mitochondria-dependent cell death. However, the underlying mechanism for mitochondrial dysfunction in glioma is not well elucidated. MTCH2 is a mitochondrial outer membrane protein that regulates mitochondrial metabolism and related cell death. This study aims to clarify the role of MTCH2 in glioma. Methods Bioinformatic analysis from TCGA and CGGA databases were used to investigate the association of MTCH2 with glioma malignancy and clinical significance. The expression of MTCH2 was verified from clinical specimens using real-time PCR and western blots in our cohorts. siRNA-mediated MTCH2 knockdown were used to assess the biological functions of MTCH2 in glioma progression, including cell invasion and temozolomide-induced cell death. Biochemical investigations of mitochondrial and cellular signaling alternations were performed to detect the mechanism by which MTCH2 regulates glioma malignancy. Results Bioinformatic data from public database and our cohort showed that MTCH2 expression was closely associated with glioma malignancy and poor patient survival. Silencing of MTCH2 expression impaired cell migration/invasion and enhanced temozolomide sensitivity of human glioma cells. Mechanistically, MTCH2 knockdown may increase mitochondrial OXPHOs and thus oxidative damage, decreased migration/invasion pathways, and repressed pro-survival AKT signaling. Conclusion Our work establishes the relationship between MTCH2 expression and glioma malignancy, and provides a potential target for future interventions.


1991 ◽  
Vol 54 (6) ◽  
pp. 424-428 ◽  
Author(s):  
LAURA L. ZAIKA ◽  
ANNA H. KIM ◽  
LOUISE FORD

A partial factorial design study of the effect of NaNO2 (0, 100, 200, 1000 ppm) in combination with NaCl (0.5, 2.5, 4.0%), pH (7.5, 6.5, 5.5), and temperature (37, 28, 19°C) on growth of Shigella flexneri is reported. Experiments were done aerobically in brain-heart infusion medium, using an inoculum of 1 × 103 CFU/ml. Growth curves were fitted from plate count data by the Gompertz equation; exponential growth rates, lag times, generation times, and maximum populations were derived for all variable combinations. In the absence of nitrite, the organism grew well under all test conditions at 37 and 28°C but did not grow at 19°C at pH 5.5 nor at pH 7.5 with 4% NaCl. Nitrite did not affect growth in media of pH 7.5 at 37 and 28°C. At pH 6.5 growth was inhibited by 1000 ppm NaNO2. The organism failed to grow at 19°C at all nitrite levels in the presence of 2.5 or 4.0% NaCl. The inhibitory effect of nitrite was much greater in media of pH 5.5 and increased with increasing salt levels. More inhibition was apparent at 28 than at 37°C. While lack of growth was used as a paradigm of the effect of nitrite on S. flexneri, nitrite also increased the lag and generation times and decreased the exponential growth rate. Results indicated that NaNO2 in combinations with low temperature, low pH, and high salt content can effectively inhibit the growth of S. flexneri.


Sign in / Sign up

Export Citation Format

Share Document