Gas flow characteristics in shale fractures after supercritical CO2 soaking

2021 ◽  
Vol 88 ◽  
pp. 103826
Author(s):  
Yiyu Lu ◽  
Jiankun Zhou ◽  
Honglian Li ◽  
Jiren Tang ◽  
Lei Zhou ◽  
...  
Author(s):  
Arash Farahani ◽  
Peter Childs

Strip seals are used in gas turbine engines between two static elements or between components which do not move relative to each other, such as Nozzle Guide Vanes (NGVs). The key role of a strip seal between NGV segments is sealing between the flow through the main stream annulus and the internal air system, a further purpose is to limit the inter-segmental movements. In general the shape of the strip seal is a rectangular strip that fits into two slots in adjacent components. The minimum clearance required for static strip seals must be found by accounting for thermal expansion, misalignment, and application, to allow correct fitment of the strip seals. Any increase in leakage raises the cost due to an increase in the cooling air use, which is linked to specific fuel consumption, and it can also alter gas flow paths and performance. The narrow path within the seal assembly, especially the height has the most significant affect on leakage. The height range of the narrow path studied in this paper is 0.01–0.06 mm. The behaviour of the flow passing through the narrow path has been studied using CFD modelling and measurements in a bespoke rig. The CFD and experimental results show that normalized leakage flow increases with pressure ratio before reaching a maximum. The main aim of this paper is to provide new experimental data to verify the CFD modelling for static strip seals. The typical flow characteristics validated by CFD modelling and experiments can be used to predict the flow behaviour for future static strip seal designs.


2013 ◽  
Vol 13 (5) ◽  
pp. 1330-1356 ◽  
Author(s):  
G. H. Tang ◽  
G. X. Zhai ◽  
W. Q. Tao ◽  
X. J. Gu ◽  
D. R. Emerson

AbstractGases in microfluidic structures or devices are often in a non-equilibrium state. The conventional thermodynamic models for fluids and heat transfer break down and the Navier-Stokes-Fourier equations are no longer accurate or valid. In this paper, the extended thermodynamic approach is employed to study the rarefied gas flow in microstructures, including the heat transfer between a parallel channel andpressure-driven Poiseuille flows through a parallel microchannel andcircular microtube. The gas flow characteristics are studied and it is shown that the heat transfer in the non-equilibrium state no longer obeys the Fourier gradient transport law. In addition, the bimodal distribution of streamwise and spanwise velocity and temperature through a long circular microtube is captured for the first time.


1982 ◽  
Vol 21 (12) ◽  
pp. 938-940
Author(s):  
A. A. Antonov ◽  
A. É. Bespalov

2021 ◽  
Vol 19 (48) ◽  
pp. 44-51
Author(s):  
Saba Jawad Kadhem

     In this manuscript has investigated the synthesis of plasma-polymerized pyrrole (C4H5N) nano-particles prepared by the proposed atmospheric pressure nonequilibrium plasma jet through the parametric studies, particularly gas flow rate (0.5, 1 and 1.5 L/min). The plasma jet which used operates with alternating voltage 7.5kv and frequency 28kHz. The plasma-flow characteristics were investigated based on optical emission spectroscopy (OES). UV-Vis spectroscopy was used to characterize the  oxidization  state for polypyrrole. The major absorption appears around 464.1, 449.7 and 435.3  nm at the three flow rate of argon gas. The chemical composition and structural properties of the contained samples which synthesized at 0.5 L/min as a argon flow rate were analyzed by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD). SEM point to a uniform distribution of polypyrrole (PPY) nanoparticles matrix. XRD technique showed a semicrystalline pattern for PPY)thin film. It is expected, that the high-quality plasma polymer grown by atmospheric pressure plasma jet method contributes to serving as conducting materials.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Piyush Pant ◽  
Dipankar Chatterjee ◽  
Sudip Kumar Samanta ◽  
Aditya Kumar Lohar

Abstract The work explores the powder transport process, using numerical simulation to address the dynamics of the powder flow in an in-house built multi-channel coaxial nozzle of a direct metal deposition (DMD) system. The fluid turbulence is handled by the standard k–ɛ and k–ω turbulence models, and the results are compared in order to predict their suitability. An image-based technique using CMOS camera is adopted to determine the powder flow characteristics. The model is validated with the in-house experimental results and verified available results in the literature. The findings of this work confirms the application of the k–ω model for powder gas flow investigations in blown powder additive manufacturing (AM) processes due to its better predictive capability. The proposed model will assist in simulating the direct metal deposition process.


2019 ◽  
Vol 175 ◽  
pp. 280-285 ◽  
Author(s):  
Shunchu Li ◽  
Chaochao Zhao ◽  
Pengshe Zheng ◽  
Qinmin Gui

2020 ◽  
Vol 56 (5) ◽  
pp. 830-835
Author(s):  
Weiwei Teng ◽  
Jiangang Shi ◽  
Baocheng Wu ◽  
Wenhui Dang ◽  
Zhenxin Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document