Analysis of oil and gas flow characteristics in the reservoir with the elastic outer boundary

2019 ◽  
Vol 175 ◽  
pp. 280-285 ◽  
Author(s):  
Shunchu Li ◽  
Chaochao Zhao ◽  
Pengshe Zheng ◽  
Qinmin Gui
Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

The introduction of wet gas compression provides the opportunity for future cost-effective production of oil and gas. A wet gas compressor consists of a robust unit able to increase the pressure of untreated natural gas. This permits longer transport of hydrocarbons without topside facilities if installed at the well head. Obvious benefits include prolonging the life of existing wells and the possibility of exploiting smaller hydrocarbon sources otherwise considered non-commercial. Successful development of robust wet gas compressors requires further understanding of the phenomena which occur when liquid is present in the gas stream. Understanding the way the presence of liquid affects the velocity triangle and slip factor is essential for the design of wet gas compressors and for comprehending their response to varying levels of liquid content in the inlet stream. An experimental study has been performed with various levels of liquid fractions and inlet swirl angles. Impeller-exit velocity components and shift in slip factors are presented within the experimental test boundary. A shift in velocity components and slip factor is experienced with increasing liquid content and inlet guide vane (IGV) setting angle. Consequently, existing slip factor correlations not utilizing inlet flow characteristics are not valid for wet gas flow or with impeller inlet swirl.


Author(s):  
Abolore Abdulahi ◽  
Lokman A. Abdulkareem ◽  
Safa Sharaf ◽  
Mukhtar Abdulkadir ◽  
Valente Hernandez Perez ◽  
...  

Pipes that make up oil and gas wells are not vertical but could be inclined at any angle between the vertical and the horizontal which is a significant technology of modern drilling. Hence, this study has been undertaken to look at the effect of inclination on flow characteristics especially at 10 degrees from both horizontal and vertical. Air/silicone oil flows in a 67 mm slightly deviated pipe have been investigated using advanced instrumentation: Wire Mesh Sensor Tomography (WMS) and Electrical Capacitance Tomography (ECT). They provide time and cross-sectionally resolved data on void fraction. Both the ECT probes and WMS were mounted on the inclined pipes upstream just at the point where flows were fully developed. By keeping the liquid flow rate constant at 10 litres/min (or liquid superficial velocity of 0.052m/s), gas flow rate was varied from 10 litres/min to 1000 litres/min (or gas superficial velocity from 0.05m/s to 4.7m/s). Then other values of liquid superficial velocity were considered. Visual observations were considered. Time series and void fraction were then measured for WMS while time series and liquid holdup were measured for ECT. The raw data were processed and then interpreted for proper analysis. From an analysis of the output from the tomography equipment, flow patterns were identified using both the reconstructed images as well as the characteristic signatures of Probability Density Function (PDF) plots of the time series of cross-sectionally averaged void fraction as suggested by some authors. Bubbly, slug and churn flows were observed for 10° from vertical pipe while bubbly, plug as well as slug flow when the pipe was inclined at 10° from horizontal. Examples of the PDFs are well illustrated which compares the use of ECT with WMS. In addition, statistical data such as Power Spectral Density (PSD), dominant frequency, mean void fraction as well as the structure velocities from cross correlation of the two planes of ECT have been identified.


2021 ◽  
Vol 88 ◽  
pp. 103826
Author(s):  
Yiyu Lu ◽  
Jiankun Zhou ◽  
Honglian Li ◽  
Jiren Tang ◽  
Lei Zhou ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1936
Author(s):  
Abdel-Hakim Bouzid

The accurate prediction of liquid leak rates in packing seals is an important step in the design of stuffing boxes, in order to comply with environmental protection laws and health and safety regulations regarding the release of toxic substances or fugitive emissions, such as those implemented by the Environmental Protection Agency (EPA) and the Technische Anleitung zur Reinhaltung der Luft (TA Luft). Most recent studies conducted on seals have concentrated on the prediction of gas flow, with little to no effort put toward predicting liquid flow. As a result, there is a need to simulate liquid flow through sealing materials in order to predict leakage into the outer boundary. Modelling of liquid flow through porous packing materials was addressed in this work. Characterization of their porous structure was determined to be a key parameter in the prediction of liquid flow through packing materials; the relationship between gland stress and leak rate was also acknowledged. The proposed methodology started by conducting experimental leak measurements with helium gas to characterize the number and size of capillaries. Liquid leak tests with water and kerosene were then conducted in order to validate the predictions. This study showed that liquid leak rates in packed stuffing boxes could be predicted with reasonable accuracy for low gland stresses. It was found that internal pressure and compression stress had an effect on leakage, as did the thickness change and the type of fluid. The measured leak rates were in the range of 0.062 to 5.7 mg/s for gases and 0.0013 and 5.5 mg/s for liquids.


2021 ◽  
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Dhafer Al Shehri ◽  
Mohamed Bahgat

Abstract Oil and gas industry deals with fluid streams with different ions and concentrations that might cause scale precipitation. The scale precipitation, will thereafter, affect the fluid flow characteristics. Many problems will be raised by the scale deposition that affects the overall petroleum production. This paper aims to develop a non-corrosive acid system with high dissolution efficiency for field complex scales that have sulfates and sulfides minerals. The paper provided a series of lab analysis that covers the compositional analysis for the collected scale sample, and evaluating the developed acid system for compatible and stable properties, dissolution efficiency, and the corrosive impact. A field scale sample that has a composite chemical composition of paraffin, asphaltene, sulfides and sulfates compounds with different weight percentages by employing the diffraction of X-ray technology. Developing the new scale dissolver was achieved by specific compositional study for the organic acids to achieve high dissolution efficiency and low corrosive impact for the field treatment operations. The study results showed the successful scale removal for the developed dissolver at low temperature of 95 and 113 °F for surface treatment jobs. The dissolution efficiency recorded 62 and 71 % for 17 hours at the temperature levels respectively. The fluid showed a stable and compatible performance and has a pH of 12. The corrosion test was conducted without any scale inhibitors and the results showed the low corrosion effect by 0.0028 lbm/ft2. The obtained successful results will help to dissolve such complex field scales, maintain the well equipment, and maintain the petroleum production from scale issues.


Author(s):  
Arash Farahani ◽  
Peter Childs

Strip seals are used in gas turbine engines between two static elements or between components which do not move relative to each other, such as Nozzle Guide Vanes (NGVs). The key role of a strip seal between NGV segments is sealing between the flow through the main stream annulus and the internal air system, a further purpose is to limit the inter-segmental movements. In general the shape of the strip seal is a rectangular strip that fits into two slots in adjacent components. The minimum clearance required for static strip seals must be found by accounting for thermal expansion, misalignment, and application, to allow correct fitment of the strip seals. Any increase in leakage raises the cost due to an increase in the cooling air use, which is linked to specific fuel consumption, and it can also alter gas flow paths and performance. The narrow path within the seal assembly, especially the height has the most significant affect on leakage. The height range of the narrow path studied in this paper is 0.01–0.06 mm. The behaviour of the flow passing through the narrow path has been studied using CFD modelling and measurements in a bespoke rig. The CFD and experimental results show that normalized leakage flow increases with pressure ratio before reaching a maximum. The main aim of this paper is to provide new experimental data to verify the CFD modelling for static strip seals. The typical flow characteristics validated by CFD modelling and experiments can be used to predict the flow behaviour for future static strip seal designs.


Sign in / Sign up

Export Citation Format

Share Document