Effect of hot working process on the mechanical properties of tungsten materials

2013 ◽  
Vol 442 (1-3) ◽  
pp. S233-S236 ◽  
Author(s):  
Qingzhi Yan ◽  
Xiaoxin Zhang ◽  
Tongnian Wang ◽  
Chuntian Yang ◽  
Changchun Ge
2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540012
Author(s):  
Yuanfei Han ◽  
Xiaofang Yang ◽  
Weidong Zeng ◽  
Weijie Lu

In this paper, the morphologic evolution of α-phases and their influence on mechanical properties during the hot working process of the Ti-6Al-4V alloy has been quantitatively investigated. Samples with a variety of different features of α-phase were obtained by hot working. A quantitative analysis of SEM/OM images is carried out to determine the features of α-phase before and after deformation, including the length, thickness, aspect ratio and volume fraction of α-phase. It was found that the α-phase platelet thickness increases with the increasing of forging height reduction on subsequent solution and aging treatment, larger height reduction would reduce the aspect ratio and length of α-phase and further makes the α-phase closest to equiaxed morphology. Moreover, the influence of the α-phase features on the mechanical properties was systematically investigated. The results indicate that the mechanical properties are strongly determined by the features of the α-phase, especially the thickness and volume fraction of the α-phase. This work will optimize the mechanical property by means of microstructural control and deepen the understanding of influence of α-phase features on the mechanical properties.


2010 ◽  
Vol 436 ◽  
pp. 171-177 ◽  
Author(s):  
Hiroaki Matsumoto ◽  
Hiroshi Yoneda ◽  
Kazuhisa Sato ◽  
Toyohiko J. Konno ◽  
Shingo Kurosu ◽  
...  

Ti alloys are widely utilized for industrial applications due to their excellent mechanical properties combined with low density. In general, Ti alloys are classified as , + and  alloys, with further subdivision into near  and metastable  alloys. Quite recently, we have presented new type structural ’ martensite (H.C.P.) Ti alloys with low Young’s modulus, high strength and excellent ductility at room temperature. In this work, we examined the microstructure and mechanical properties of ’ martensite type Ti-V-Al alloy after cold- or hot working process. Then, we found that deformation behavior of ’ initial microstructure as compared with (+) initial microstructure was different based on the results of stress-strain curves and Processing Maps under the hot working process. Further, cold rolled ’ martensite microstructure exhibited the refined equiaxed dislocation cell structure, thereby resulting in high strength. This result suggests the new type deformation processing (for both cold- and hot work processing) utilizing ’ martensite in industrial Ti alloys.


2019 ◽  
Author(s):  
Wahyu Hidayat

1.Hot Working Process (Pengerjaan Dalam Kondisi Panas)Pada proses pengerjaan Hot Working Process ini akan terjadi kenaikan tegangan luluh, kenaikan nilai kekerasan material (logam baja), dan penurunan nilai keuletan material.2.Cold Working Process (Pengerjaan Dalam Kondisi Dingin) Proses pembentukan logam secara plastis dengan temperatur pengerjaan di bawah temperatur rekristalisasi.


2011 ◽  
Vol 239-242 ◽  
pp. 1670-1673 ◽  
Author(s):  
Lei Li ◽  
Biao Ma ◽  
Qiang Li ◽  
Guo Jie Huang

Traditional lead brass is gradually prevented from application by many countries’ governments because lead does harm to human health and pollutes the environment. New types of environment-friendly lead-free brass with favorable machinability are urgently demanded in the electrical, electronics and plumping fields. Lead-free Mg-Sb brass was fabricated in present. Experimental results showed that when the content of Mg is 1.0wt%, Sb is 0.8wt% and Cu is 58.0~59.0wt%, the alloy’s mechanical properties and machinability are favorable for industry application. With the increase of the content of Sb, the machinability increased, while the mechanical properties decreased. Lots of Cu2Mg and Cu9Sb2 particles on the order of microns exist in the inner-grain and grain boundaries. These particles improve the machinability, however, lower the tensile strength and the elongation. A three-way pipe joint was successfully punched with the fabricated Mg-Sb brass bar, and this demonstrated that the fabricated Mg-Sb brass possesses favorable hot working property.


2020 ◽  
Vol 7 ◽  
pp. 18 ◽  
Author(s):  
Jian Zhang ◽  
Hongwei Li ◽  
Mei Zhan

The globularization of titanium alloy with lamellar colony during hot working is an important way to obtain fine and homogeneous microstructure which has excellent mechanical properties. Because of its great technological importance, globularization has captured wide attention and much research. This paper conducts a systematic study on state of art on globularization of titanium alloy, which mainly includes globularization mechanism, prediction model and the effects of hot-working parameters and microstructure parameters. Firstly, the shortcomings of the well-known globularization mechanisms (dynamic recrystallization, boundary splitting, shearing mechanism and termination migration) were summarized. Moreover, the comparison and analysis of prediction models were accomplished through tabular form. In addition, the effects of hot-working parameters (strain, strain rate, temperature) and microstructure parameters (alpha/beta interface, geometry necessary dislocation and high temperature parent beta phase) were systematically summarized and analyzed. Meanwhile, this study also explores those difficulties and challenges faced by precise control on globularization. Finally, an outlook and development tendency of globularization of titanium alloy are also provided, which includes microstructure evolution of three-dimensional lamellar alpha, the relationship between lamellar colony and mechanical properties and the effect of severe plastic deformation on globularization.


2011 ◽  
Vol 188 ◽  
pp. 671-674
Author(s):  
Yi Nan Lai ◽  
M.J. Zhao ◽  
Y. Dai ◽  
M.Z. Lai ◽  
X. Lai

According to the requirements of the ground demonstration test for small-sized docking mechanism, a set of ground test platform was designed, which can simulate the weightless environment of space and provide six degrees of freedom for the docking mechanism. This paper elaborated the structure and working process of the test platform, and used the way of rigid-flexible coupling to analysis the test platform in dynamics simulation by ADAMS. The mechanical properties of the platform’s key parts during the collision process were obtained


Sign in / Sign up

Export Citation Format

Share Document