Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review

2021 ◽  
pp. 102332
Author(s):  
Blessen Skariah Thomas ◽  
Jian Yang ◽  
Kim Hung Mo ◽  
Jamal A. Abdalla ◽  
Rami A. Hawileh ◽  
...  
2015 ◽  
Vol 74 ◽  
pp. 176-187 ◽  
Author(s):  
Evi Aprianti ◽  
Payam Shafigh ◽  
Syamsul Bahri ◽  
Javad Nodeh Farahani

2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Deborah Dauda ◽  
Manju Dominic

Many ways have been sought to improve soils, especially expansive soils which have been problematic to structures and pavements built over them and soil stabilization seems to be one of the effective ways. But soil stabilization in itself is not cost-effective hence the introduction of agricultural wastes being researched on and seen as a cheaper means to be used as stabilizing agents which helps in minimizing the cost of soil stabilization, thereby reducing the problem of waste disposal. Agricultural wastes like Rice Husk Ash, Bagasse Ash, Sugarcane Straw Ash, Saw Dust Ash, Coconut Husk Ash, Millet Husk Ash, Corn Cob Ash, Locust Bean Pod Ash, Cassava Peel Ash and Bamboo Leaf Ash have been experimented with in stabilizing soils and as well, serving as supplementary cementitious materials for cement in concrete production. The strengths of the soils and the concrete stabilized with these wastes were seen to improve significantly and their effectiveness was estimated based on an average optimum value. Agricultural waste processing Industries can be set up to help in the massive production of these natural stabilizers which would lessen the cost of soil stabilization using cement and chemicals and also generally reduce problems that are associated with waste disposal, helping in waste management.  Keywords—expansive soils, soil stabilization, agricultural wastes


2016 ◽  
Vol 711 ◽  
pp. 511-518 ◽  
Author(s):  
Vivek Bindiganavile ◽  
Jose R.A. Goncalves ◽  
Yaman Boluk

Portland cement concrete (PCC) is now second only to potable water in per capita consumption. And notwithstanding its numerous benefits, Portland cement itself is responsible for between 4 to 5% of the world’s manmade greenhouse gas emissions. In this context, geopolymer concrete is a promising alternative, wherein the Portland cement binder is replaced entirely by supplementary cementitious materials triggered by alkaline activators. Relatively little is known on the fracture response of this system, especially when exposed to extreme temperatures. The study reported here focused on the crack growth response of such a system prepared with Class F fly ash and reinforced with steel and polymeric fibres up to 1% volume fraction. The geopolymerization was effected with a blend of sodium hydroxide and sodium silicate to achieve a compressive strength of 30 MPa at 28 days. The resulting geopolymer concrete was subjected to temperatures between-30 oC to 300 oC, sustained for 2 hours. A fibre blend of steel to polypropylene in the mass ratio of 4:1 was incorporated. Based on the results, four different stages for fracture behaviour were identified with superior fibre efficiency seen at sub-zero temperatures.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1112 ◽  
Author(s):  
Suvash Chandra Paul ◽  
Peter Mbewe ◽  
Sih Kong ◽  
Branko Šavija

Concrete production utilizes cement as its major ingredient. Cement production is an important consumer of natural resources and energy. Furthermore, the cement industry is a significant CO2 producer. To reduce the environmental impact of concrete production, supplementary cementitious materials such as fly ash, blast furnace slag, and silica fume are commonly used as (partial) cement replacement materials. However, these materials are industrial by-products and their availability is expected to decrease in the future due to, e.g., closing of coal power plants. In addition, these materials are not available everywhere, for example, in developing countries. In these countries, industrial and agricultural wastes with pozzolanic behavior offer opportunities for use in concrete production. This paper summarizes the engineering properties of concrete produced using widespread agricultural wastes such as palm oil fuel ash, rice husk ash, sugarcane bagasse ash, and bamboo leaf ash. Research on cement replacement containing agricultural wastes has shown that there is great potential for their utilization as partial replacement for cement and aggregates in concrete production. When properly designed, concretes containing these wastes have similar or slightly better mechanical and durability properties compared to ordinary Portland cement (OPC) concrete. Thus, successful use of these wastes in concrete offers novel sustainable materials and contributes to greener construction as it reduces the amount of waste, while also minimizing the use of virgin raw materials for cement production. This paper will help the concrete industry choose relevant waste products and their optimum content for concrete production. Furthermore, this study identifies research gaps which may help researchers in further studying concrete based on agricultural waste materials.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1004
Author(s):  
Slobodan Šupić ◽  
Mirjana Malešev ◽  
Vlastimir Radonjanin ◽  
Vesna Bulatović ◽  
Tiana Milović

A sustainable use of locally available wastes from agriculture as supplementary cementitious materials (SCMs) is an alternative solution for the prevention of excessive raw material usage, reduction of CO2 emission and cost-effective concrete production. This paper studies the reactivity of non-traditional waste SCMs: Wheat straw ash (WSA), mixture of wheat and soybean straw ash (WSSA) and soybean straw ash (SSA), which are abundant as agricultural by-products in Serbia. The chemical evaluation using XRF technique, thermal analysis (TGA/DSC), XRD and FTIR methods were performed along with physical properties tests to investigate the feasibility of utilizing biomass ashes as cement substitutes. The obtained results demonstrate a high pozzolanic activity of WSA, which is attributed to a high reactive silica content of the ash and its satisfactory level of fineness. A wider hump in XRD pattern of WSA compared to WSSA and SSA confirmed that it abounds in amorphous (reactive) phase. The insufficient activity index of soybean-based biomass ashes, characterized with a low silica content, was improved by additional grinding and/or blending with amorphous silica-rich material. This points out the mechanical activation, i.e., grinding procedure, and chemical activation, i.e., modification of the chemical composition, as techniques efficient at producing pozzolanic materials from biomass wastes. Tested biomass ashes are characterized with negligible leaching values of heavy metals, thereby satisfying eco-friendly principles of SCM utilization. The application of biomass ashes as SCMs leads to substantial cost savings, as well as benefits to the environment, such as lower consumption of cement, reduction of CO2 emissions during the production of cement and sustainable waste management.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Sign in / Sign up

Export Citation Format

Share Document