Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum

2009 ◽  
Vol 166 (18) ◽  
pp. 1993-2003 ◽  
Author(s):  
Majid Mahdieh ◽  
Akbar Mostajeran
HortScience ◽  
2011 ◽  
Vol 46 (12) ◽  
pp. 1640-1645 ◽  
Author(s):  
Manuel G. Astacio ◽  
Marc W. van Iersel

Previous work has shown that exogenous abscisic acid (ABA) applications can reduce transpiration, delay wilting, and thereby extend the shelf life of unwatered plants. Paradoxically, we have seen that drenches with concentrated ABA solutions may actually induce wilting. These wilting symptoms occur despite the presence of ample water in the substrate, suggesting that ABA may interfere with the ability of roots to take up water. Our objective was to develop a better understanding of this wilting effect using tomato (Solanum lycopersicum) as a model. In the first study, ABA drenches (125–2000 mg·L−1) reduced transpiration and water use compared with the control plants, yet the relative water content (RWC) of the leaves of ABA-treated plants was lower than that of control plants at 24 h after the ABA drench. Control plants had a leaf RWC of 97%, whereas plants treated ABA had a RWC of 57% to 62%. ABA concentrations of 500 mg·L−1 or higher caused the plants to wilt within 24 h despite the presence of ample water in the substrate. Leaf ABA concentrations 24 h after the ABA application ranged from 2.6 (control) to 62.6 nmol·g−1 fresh weight (FW) in the 2000-mg·L−1 ABA treatment, indicating effective transport of ABA from the roots to the leaves. The reduced leaf RWC suggests that ABA drenches are limiting water transport through the roots to the leaves. The effects of ABA on the hydraulic conductance of the roots and stems of tomatoes were quantified to determine if ABA drenches limit water transport through the roots. The cumulative volume of water conducted by the root systems during a 4-day period ranged from 36.7 mL in the control treatments to 8.1 mL in roots systems drenched with 1000 mg·L−1 ABA, a reduction of 78%. When the conductance study was repeated using decapitated roots and excised stems, root water flux was again reduced by ABA, but water flux through internodal stem sections did not show an ABA effect. Results suggest that ABA-induced wilting is caused by a reduction in root conductance and we hypothesize that ABA affects aquaporins in the roots, limiting water uptake.


1984 ◽  
Vol 11 (5) ◽  
pp. 431 ◽  
Author(s):  
B Smit-Spinks ◽  
BT Swanson ◽  
AH Iii Markhart

Scotch pine seedlings (Pinus sylvestris L.) were subjected to 6 week photoperiod and thermoperiod treatments to induce different levels of cold acclimation. The water content, relative water content, xylem pressure potential, transpiration rate, root hydraulic conductance, and abscisic acid (ABA) content of root exudate were then measured. Water content decreased in woody stems and needles with cold acclimation but not in the roots and green stems. There was a close correlation between relative water content and water content of woody stems and needles as well as a decrease in xylem pressure potentials of hardy needles, indicating that the reduction in water content was at least partially due to increased water deficit. The increased water deficit was not caused by increased water loss since transpiration rates decreased in hardy shoots. Water uptake was reduced by decreased root hydraulic conductance which could account for the shoot water deficits. Root hydraulic conductance and transpiration rate returned to non-acclimated levels after warm temperature exposure. ABA levels were highest in the root exudate collected in the morning from non-acclimated plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiangfeng Tan ◽  
Mengmeng Liu ◽  
Ning Du ◽  
Janusz J. Zwiazek

Abstract Background Root hypoxia has detrimental effects on physiological processes and growth in most plants. The effects of hypoxia can be partly alleviated by ethylene. However, the tolerance mechanisms contributing to the ethylene-mediated hypoxia tolerance in plants remain poorly understood. Results In this study, we examined the effects of root hypoxia and exogenous ethylene treatments on leaf gas exchange, root hydraulic conductance, and the expression levels of several aquaporins of the plasma membrane intrinsic protein group (PIP) in trembling aspen (Populus tremuloides) seedlings. Ethylene enhanced net photosynthetic rates, transpiration rates, and root hydraulic conductance in hypoxic plants. Of the two subgroups of PIPs (PIP1 and PIP2), the protein abundance of PIP2s and the transcript abundance of PIP2;4 and PIP2;5 were higher in ethylene-treated trembling aspen roots compared with non-treated roots under hypoxia. The increases in the expression levels of these aquaporins could potentially facilitate root water transport. The enhanced root water transport by ethylene was likely responsible for the increase in leaf gas exchange of the hypoxic plants. Conclusions Exogenous ethylene enhanced root water transport and the expression levels of PIP2;4 and PIP2;5 in hypoxic roots of trembling aspen. The results suggest that ethylene facilitates the aquaporin-mediated water transport in plants exposed to root hypoxia.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 450 ◽  
Author(s):  
Hamideh Fatemi ◽  
Chokri Zaghdoud ◽  
Pedro A. Nortes ◽  
Micaela Carvajal ◽  
Maria del Carmen Martínez-Ballesta

Zinc (Zn) is considered an essential element with beneficial effects on plant cells; however, as a heavy metal, it may induce adverse effects on plants if its concentration exceeds a threshold. In this work, the effects of short-term and prolonged application of low (25 µM) and high (500 µM) Zn concentrations on pak choi (Brassica rapa L.) plants were evaluated. For this, two experiments were conducted. In the first, the effects of short-term (15 h) and partial foliar application were evaluated, and in the second a long-term (15 day) foliar application was applied. The results indicate that at short-term, Zn may induce a rapid hydraulic signal from the sprayed leaves to the roots, leading to changes in root hydraulic conductance but without effects on the whole-leaf gas exchange parameters. Root accumulation of Zn may prevent leaf damage. The role of different root and leaf aquaporin isoforms in the mediation of this signal is discussed, since significant variations in PIP1 and PIP2 gene expression were observed. In the second experiment, low Zn concentration had a beneficial effect on plant growth and specific aquaporin isoforms were differentially regulated at the transcriptional level in the roots. By contrast, the high Zn concentration had a detrimental effect on growth, with reductions in the root hydraulic conductance, leaf photosynthesis rate and Ca2+ uptake in the roots. The abundance of the PIP1 isoforms was significantly increased during this response. Therefore, a 25 µM Zn dose resulted in a positive effect in pak choi growth through an increased root hydraulic conductance.


1989 ◽  
Vol 16 (3) ◽  
pp. 241 ◽  
Author(s):  
NZ Saliendra ◽  
FC Meinzer

Stomatal conductance, leaf and soil water status, transpiration, and apparent root hydraulic conductance were measured during soil drying cycles for three sugarcane cultivars growing in containers in a greenhouse. At high soil moisture, transpiration and apparent root hydraulic conductance differed considerably among cultivars and were positively correlated, whereas leaf water potential was similar among cultivars. In drying soil, stomatal and apparent root hydraulic conductance approached zero over a narrow (0.1 MPa) range of soil water suction. Leaf water potential remained nearly constant during soil drying because the vapor phase conductance of the leaves and the apparent liquid phase conductance of the root system declined in parallel. The decline in apparent root hydraulic conductance with soil drying was manifested as a large increase in the hydrostatic pressure gradient between the soil and the root xylem. These results suggested that control of stomatal conductance in sugarcane plants exposed to drying soil was exerted primarily at the root rather than at the leaf level.


2002 ◽  
Vol 80 (6) ◽  
pp. 684-689 ◽  
Author(s):  
Simon M Landhäusser ◽  
Tawfik M Muhsin ◽  
Janusz J Zwiazek

Low soil temperatures, common during the growing season in northern forests, have the potential to impede plant growth. In this study, water uptake, water relations, and growth characteristics were examined in aspen (Populus tremuloides) and white spruce (Picea glauca) seedlings that were inoculated with ectomycorrhizal fungi and grown at 20°C daytime air temperatures and low soil temperatures of 4°C and 8°C. Mycorrhizal associations had little effect on root and shoot biomass at both soil temperatures. Root hydraulic conductance (Kr) was higher in both mycorrhizal plant species compared to nonmycorrhizal plants, but there was no soil temperature effect on Kr in either species. Mycorrhizae also increased shoot water potential (Ψw) in Populus tremuloides but had no effect on Ψw in Picea glauca. The increases in Kr and Ψw were not reflected by changes in stomatal conductance (gs) and transpiration rates (E), suggesting that the reduction of water flow in seedlings exposed to low soil temperature was not likely the factor limiting gs in both plant species.Key words: boreal forest, root hydraulic conductance, root growth, stomatal conductance, water uptake.


Sign in / Sign up

Export Citation Format

Share Document