The PsbS protein plays important roles in photosystem II supercomplex remodeling under elevated light conditions

2015 ◽  
Vol 172 ◽  
pp. 33-41 ◽  
Author(s):  
Lianqing Dong ◽  
Wenfeng Tu ◽  
Kun Liu ◽  
Ruixue Sun ◽  
Cheng Liu ◽  
...  
2021 ◽  
Vol 22 (8) ◽  
pp. 4021
Author(s):  
Monika Kula-Maximenko ◽  
Kamil Jan Zieliński ◽  
Ireneusz Ślesak

Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


2017 ◽  
Vol 114 (38) ◽  
pp. E8110-E8117 ◽  
Author(s):  
Jun Liu ◽  
Robert L. Last

Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded byAt4g02530) is required for growth acclimation ofArabidopsis thalianaplants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented thatmph2mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover,mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.


2016 ◽  
Vol 6 ◽  
Author(s):  
Wenfeng Tu ◽  
Yang Li ◽  
Wu Liu ◽  
Lishuan Wu ◽  
Xiaoyan Xie ◽  
...  

2006 ◽  
Vol 281 (36) ◽  
pp. 26260-26267 ◽  
Author(s):  
Xiaoping Yi ◽  
Stefan R. Hargett ◽  
Laurie K. Frankel ◽  
Terry M. Bricker

1993 ◽  
Vol 48 (3-4) ◽  
pp. 246-250
Author(s):  
Anna J. Syme ◽  
Harald R . Bolhàr-N ordenkampf ◽  
Christa Critchley

Abstract Light-induced degradation of the D 1 protein of photosystem II (PS II) was determined by radioactive pulse-chase labelling experiments in intact leaves of Schefflera polybotrya. PS II photochemical efficiency was monitored by measuring chlorophyll fluorescence. A significant and consistent decline in the Fv/ Fm ratio was taken to indicate photoinhibition. The formation and degradation of a modified form of the D 1 protein, D 1*, was different under photoinhibi-tory or non-photoinhibitory light conditions. At photoinhibitory irradiance greater amounts of D 1 * were formed relative to D 1, and the degradation of D 1* was slower when compared with non-photoinhibitory irradiance. The formation and degradation of D 1* were therefore shown to be at least partly light intensity dependent. Higher light intensities appeared to slow D 1* degradation, which suggests a modification in PS II turnover properties.


Sign in / Sign up

Export Citation Format

Share Document