scholarly journals Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle

2017 ◽  
Vol 313 (4) ◽  
pp. R372-R384 ◽  
Author(s):  
James R. Broatch ◽  
Aaron Petersen ◽  
David J. Bishop

We investigated the underlying molecular mechanisms by which postexercise cold-water immersion (CWI) may alter key markers of mitochondrial biogenesis following both a single session and 6 wk of sprint interval training (SIT). Nineteen men performed a single SIT session, followed by one of two 15-min recovery conditions: cold-water immersion (10°C) or a passive room temperature control (23°C). Sixteen of these participants also completed 6 wk of SIT, each session followed immediately by their designated recovery condition. Four muscle biopsies were obtained in total, three during the single SIT session (preexercise, postrecovery, and 3 h postrecovery) and one 48 h after the last SIT session. After a single SIT session, phosphorylated (p-)AMPK, p-p38 MAPK, p-p53, and peroxisome proliferator-activated receptor-γ coactivator-1α ( PGC-1α) mRNA were all increased ( P < 0.05). Postexercise CWI had no effect on these responses. Consistent with the lack of a response after a single session, regular postexercise CWI had no effect on PGC-1α or p53 protein content. Six weeks of SIT increased peak aerobic power, maximal oxygen consumption, maximal uncoupled respiration (complexes I and II), and 2-km time trial performance ( P < 0.05). However, regular CWI had no effect on changes in these markers, consistent with the lack of response in the markers of mitochondrial biogenesis. Although these observations suggest that CWI is not detrimental to endurance adaptations following 6 wk of SIT, they question whether postexercise CWI is an effective strategy to promote mitochondrial biogenesis and improvements in endurance performance.

2018 ◽  
Vol 125 (2) ◽  
pp. 429-444 ◽  
Author(s):  
Danny Christiansen ◽  
David J. Bishop ◽  
James R. Broatch ◽  
Jens Bangsbo ◽  
Michael J. McKenna ◽  
...  

Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K+ transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally active men (24 ± 6 yr, 79.5 ± 10.8 kg, 44.6 ± 5.8 ml·kg−1·min−1) completed six weeks of sprint-interval cycling, either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10°C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na+, K+-ATPase isoforms (α1–3, β1–3) and phospholemman (FXYD1) and after recovery treatments (+0 h and +3 h) on the first day of training to measure mRNA content. Training increased ( P < 0.05) the abundance of α1 and β3 in both fiber types and β1 in type-II fibers and decreased FXYD1 in type-I fibers, whereas α2 and α3 abundance was not altered by training ( P > 0.05). CWI after each session did not influence responses to training ( P > 0.05). However, α2 mRNA increased after the first session in COLD (+0 h, P < 0.05) but not in CON ( P > 0.05). In both conditions, α1 and β3 mRNA increased (+3 h; P < 0.05) and β2 mRNA decreased (+3 h; P < 0.05), whereas α3, β1, and FXYD1 mRNA remained unchanged ( P > 0.05) after the first session. In summary, Na+,K+-ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which, for most isoforms, do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K+ regulation. NEW & NOTEWORTHY Although cold-water immersion (CWI) after training and competition has become a routine for many athletes, limited published evidence exists regarding its impact on training adaptation. Here, we show that CWI can be performed regularly without impairing training-induced adaptations at the fiber-type level important for muscle K+ handling. Furthermore, sprint-interval training invoked fiber type-specific adaptations in K+ transport proteins, which may explain the dissociated responses of whole-muscle protein levels and K+ transport function to training previously reported.


2020 ◽  
Vol 120 (11) ◽  
pp. 2487-2493
Author(s):  
R. Allan ◽  
J. P. Morton ◽  
G. L. Close ◽  
B. Drust ◽  
W. Gregson ◽  
...  

AbstractThis investigation sought to determine whether post-exercise cold water immersion and low glycogen availability, separately and in combination, would preferentially activate either the Exon 1a or Exon 1b Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) promoter. Through a reanalysis of sample design, we identified that the systemic cold-induced augmentation of total PGC-1α gene expression observed previously (Allan et al. in J Appl Physiol 123(2):451–459, 2017) was largely a result of increased expression from the alternative promoter (Exon 1b), rather than canonical promoter (Exon 1a). Low glycogen availability in combination with local cooling of the muscle (Allan et al. in Physiol Rep 7(11):e14082, 2019) demonstrated that PGC-1α alternative promoter (Exon 1b) expression continued to rise at 3 h post-exercise in all conditions; whilst, expression from the canonical promoter (Exon 1a) decreased between the same time points (post-exercise–3 h post-exercise). Importantly, this increase in PGC-1α Exon 1b expression was reduced compared to the response of low glycogen or cold water immersion alone, suggesting that the combination of prior low glycogen and CWI post-exercise impaired the response in gene expression versus these conditions individually. Data herein emphasise the influence of post-exercise cooling and low glycogen availability on Exon-specific control of total PGC-1 α gene expression and highlight the need for future research to assess Exon-specific regulation of PGC-1α.


2021 ◽  
Vol 3 ◽  
Author(s):  
Mohammed Ihsan ◽  
Chris R. Abbiss ◽  
Robert Allan

In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.


2016 ◽  
Vol 21 (5) ◽  
pp. 793-804 ◽  
Author(s):  
Paula Fernandes Aguiar ◽  
Sílvia Mourão Magalhães ◽  
Ivana Alice Teixeira Fonseca ◽  
Vanessa Batista da Costa Santos ◽  
Mariana Aguiar de Matos ◽  
...  

2020 ◽  
Vol 45 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Flávio de Castro Magalhães ◽  
Paula Fernandes Aguiar ◽  
Rosalina Tossige-Gomes ◽  
Sílvia Mourão Magalhães ◽  
Vinícius de Oliveira Ottone ◽  
...  

High-intensity interval training (HIIT) induces vascular adaptations that might be attenuated by postexercise cold-water immersion (CWI). Circulating angiogenic cells (CAC) participate in the vascular adaptations and circulating endothelial cells (CEC) indicate endothelial damage. CAC and CEC are involved in vascular adaptation. Therefore, the aim of the study was to investigate postexercise CWI during HIIT on CAC and CEC and on muscle angiogenesis-related molecules. Seventeen male subjects performed 13 HIIT sessions followed by 15 min of passive recovery (n = 9) or CWI at 10 °C (n = 8). HIIT comprised cycling (8–12 bouts, 90%–110% peak power). The first and the thirteenth sessions were similar (8 bouts at 90% of peak power). Venous blood was drawn before exercise (baseline) and after the recovery strategy (postrecovery) in the first (pretraining) and in the thirteenth (post-training) sessions. For CAC and CEC identification lymphocyte surface markers (CD133, CD34, and VEGFR2) were used. Vastus lateralis muscle biopsies were performed pre- and post-training for protein (p-eNOSser1177) and gene (VEGF and HIF-1) expression analysis related to angiogenesis. CAC was not affected by HIIT or postexercise CWI. Postexercise CWI increased acute and baseline CEC number. Angiogenic protein and genes were not differently modulated by post-CWI. HIIT followed by either recovery strategy did not alter CAC number. Postexercise CWI increased a marker of endothelial damage both acutely and chronically, suggesting that this postexercise recovery strategy might cause endothelial damage. Novelty HIIT followed by CWI did not alter CAC. HIIT followed by CWI increased CEC. Postexercise CWI might cause endothelial damage.


2015 ◽  
Vol 309 (3) ◽  
pp. R286-R294 ◽  
Author(s):  
Mohammed Ihsan ◽  
James F. Markworth ◽  
Greig Watson ◽  
Hui Cheng Choo ◽  
Andrew Govus ◽  
...  

This study investigated the effect of regular postexercise cold water immersion (CWI) on muscle aerobic adaptations to endurance training. Eight males performed 3 sessions/wk of endurance training for 4 wk. Following each session, subjects immersed one leg in a cold water bath (10°C; COLD) for 15 min, while the contralateral leg served as a control (CON). Muscle biopsies were obtained from vastus lateralis of both CON and COLD legs prior to training and 48 h following the last training session. Samples were analyzed for signaling kinases: p38 MAPK and AMPK, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), enzyme activities indicative of mitochondrial biogenesis, and protein subunits representative of respiratory chain complexes I–V. Following training, subjects' peak oxygen uptake and running velocity were improved by 5.9% and 6.2%, respectively ( P < 0.05). Repeated CWI resulted in higher total AMPK, phosphorylated AMPK, phosphorylated acetyl-CoA carboxylase, β-3-hydroxyacyl-CoA-dehydrogenase and the protein subunits representative of complex I and III ( P < 0.05). Moreover, large effect sizes (Cohen's d > 0.8) were noted with changes in protein content of p38 ( d = 1.02, P = 0.064), PGC-1α ( d = 0.99, P = 0.079), and peroxisome proliferator-activated receptor α ( d = 0.93, P = 0.10) in COLD compared with CON. No differences between conditions were observed in the representative protein subunits of respiratory complexes II, IV, and V and in the activities of several mitochondrial enzymes ( P > 0.05). These findings indicate that regular CWI enhances p38, AMPK, and possibly mitochondrial biogenesis.


2019 ◽  
Vol 126 (4) ◽  
pp. 1110-1116
Author(s):  
Ramzi A. Al-horani ◽  
Bahaa Al-Trad ◽  
Saja Haifawi

Myocardial mitochondrial biogenesis and vascular angiogenesis biomarker responses to postexercise cold-water immersion (CWI) have not been reported. Therefore, to determine those cardiac adaptations, adult male Sprague-Dawley rats were divided into three groups: postexercise CWI (CWI; n = 13), exercise only (Ex; n = 12), and untreated control (CON; n = 10). CWI and Ex were trained for 10 wk, 5 sessions/wk, 30–60 min/session. CWI rats were immersed after each session in cold water (15 min at ~12°C). CON remained sedentary. Left ventricle tissue was obtained 48 h after the last exercise session and analyzed for peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), vascular endothelial growth factor (VEGF), and heat shock protein 70 kDa (Hsp70) protein content and mRNA expression levels. In addition, superoxide dismutase activity and mRNA and malondialdehyde levels were evaluated. Ex and CWI induced higher PGC-1α protein content compared with CON (1.8 ± 0.6-fold, P < 0.001), which was significantly higher in CWI than Ex rats ( P = 0.01). VEGF protein (4.3 ± 3.7-fold) and mRNA (10.1 ± 1.1-fold) were markedly increased only in CWI ( P < 0.001) relative to CON. CWI and Ex augmented cardiac Hsp70 protein to a similar level relative to CON ( P < 0.05); however, Hsp70 mRNA increased only in Ex ( P = 0.002). No further differences were observed between groups. These results suggest that postexercise CWI may further enhance cardiac oxidative capacity by increasing the angiogenic and mitochondrial biogenic factors. In addition, CWI does not seem to worsen exercise-induced cardioprotection and oxidative stress. NEW & NOTEWORTHY A regular postexercise cold-water immersion for 10 wk of endurance training augmented the myocardial mitochondrial biogenesis and vascular angiogenesis coactivators peroxisome proliferator-activated receptor γ coactivator-1α and vascular endothelial growth factor, respectively. In addition, postexercise cold-water immersion did not attenuate the exercise-induced increase in the cardioprotective biomarker heat shock protein 70 kDa or increase exercise-induced oxidative stress.


2020 ◽  
Vol 129 (2) ◽  
pp. 353-365 ◽  
Author(s):  
Robert D. Hyldahl ◽  
Jonathan M. Peake

Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.


2014 ◽  
Vol 222 (3) ◽  
pp. 165-170 ◽  
Author(s):  
Andrew L. Geers ◽  
Jason P. Rose ◽  
Stephanie L. Fowler ◽  
Jill A. Brown

Experiments have found that choosing between placebo analgesics can reduce pain more than being assigned a placebo analgesic. Because earlier research has shown prior experience moderates choice effects in other contexts, we tested whether prior experience with a pain stimulus moderates this placebo-choice association. Before a cold water pain task, participants were either told that an inert cream would reduce their pain or they were not told this information. Additionally, participants chose between one of two inert creams for the task or they were not given choice. Importantly, we also measured prior experience with cold water immersion. Individuals with prior cold water immersion experience tended to display greater placebo analgesia when given choice, whereas participants without this experience tended to display greater placebo analgesia without choice. Prior stimulus experience appears to moderate the effect of choice on placebo analgesia.


Sign in / Sign up

Export Citation Format

Share Document