y+ cationic amino acid transport of arginine in packed red blood cells

2013 ◽  
Vol 179 (1) ◽  
pp. e183-e187 ◽  
Author(s):  
Levi D. Procter ◽  
Cindy F. Meier ◽  
Cameron Hamilton ◽  
Andrew R. Gerughty ◽  
Philip Overall ◽  
...  
1990 ◽  
Vol 154 (1) ◽  
pp. 355-370 ◽  
Author(s):  
DARON A. FINCHAM ◽  
MICHAEL W. WOLOWYK ◽  
JAMES D. YOUNG

Intracellular amino acid levels and the characteristics of amino acid transport were investigated in red blood cells of a primitive vertebrate, the Pacific hagfish (Eptatretus stouti Lockington). In contrast to red cells from euryhaline teleosts and elasmobranchs, which contain high concentrations of β-amino acids, those from hagfish exhibited an intracellular amino acid pool (approx. lOOmmoll−1cell water) composed almost entirely of conventional aαamino acids. Red cell:plasma distribution ratios for individual amino acids ranged from 219, 203 and 173 for alanine, αaminonbutyrate and proline, respectively, to 11 and 13 for lysine and arginine. Corresponding distribution ratios for Na+, K+ and Cl− were 0.043, 21 and 0.32, respectively. The cellular uptake of amino acids, with the exception of Lproline and glycine, was Na+-independent. Compared with mammalian and avian red cells, those from hagfish exhibited 104-fold higher rates of L-alanine transport. Uptake of this amino acid from the extracellular medium was concentrative, but occurred as a 1:1 exchange with intracellular amino acids. The L-alanine transport mechanism was identified as an asc-type system on the basis of its Na+ independence and selectivity for neutral amino acids of intermediate size. A volume-sensitive amino acid channel, which is found in both euryhaline teleosts and in elasmobranchs, is absent from hagfish red cells.


1990 ◽  
Vol 10 (6) ◽  
pp. 527-535 ◽  
Author(s):  
Antonio Felipe ◽  
Octavi Viñas ◽  
Xavier Remesar

The transport of L-proline, L-lysine and L-glutamate in rat red blood cells has been studied. L-proline and L-lysine uptake were Na+-independent. When the concentration dependence was studied both showed a non-saturable uptake assimilable to a difussion-like process, with high Kd values (0.718 and 0.191 min−1 for L-proline and L-lysine respectively). Rat red blood cells showed high impermeability to L-glutamate. No sodium dependence was observed and the Kd value was low (0.067 min−1). Our results show firstly, that rat red blood cells do not have amino acid transport systems for anionic and cationic amino acids and secondly that erythrocytes show no sodium-dependent L-proline transport, and that these cells are very permeable to this amino acid.


2005 ◽  
Vol 288 (2) ◽  
pp. C290-C303 ◽  
Author(s):  
Tiziano Verri ◽  
Cinzia Dimitri ◽  
Sonia Treglia ◽  
Fabio Storelli ◽  
Stefania De Micheli ◽  
...  

Information regarding cationic amino acid transport systems in thyroid is limited to Northern blot detection of y+LAT1 mRNA in the mouse. This study investigated cationic amino acid transport in PC cell line clone 3 (PC Cl3 cells), a thyroid follicular cell line derived from a normal Fisher rat retaining many features of normal differentiated follicular thyroid cells. We provide evidence that in PC Cl3 cells plasmalemmal transport of cationic amino acids is Na+ independent and occurs, besides diffusion, with the contribution of high-affinity, carrier-mediated processes. Carrier-mediated transport is via y+, y+L, and b0,+ systems, as assessed by l-arginine uptake and kinetics, inhibition of l-arginine transport by N-ethylmaleimide and neutral amino acids, and l-cystine transport studies. y+L and y+ systems account for the highest transport rate (with y+L > y+) and b0,+ for a residual fraction of the transport. Uptake data correlate to expression of the genes encoding for CAT-1, CAT-2B, 4F2hc, y+LAT1, y+LAT2, rBAT, and b0,+AT, an expression profile that is also shown by the rat thyroid gland. In PC Cl3 cells cationic amino acid uptake is under TSH and/or cAMP control (with transport increasing with increasing TSH concentration), and upregulation of CAT-1, CAT-2B, 4F2hc/y+LAT1, and rBAT/b0,+AT occurs at the mRNA level under TSH stimulation. Our results provide the first description of an expression pattern of cationic amino acid transport systems in thyroid cells. Furthermore, we provide evidence that extracellular l-arginine is a crucial requirement for normal PC Cl3 cell growth and that long-term l-arginine deprivation negatively influences CAT-2B expression, as it correlates to reduction of CAT-2B mRNA levels.


2013 ◽  
Vol 62 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Hideharu Ochiai ◽  
Jun Moriyama ◽  
Nobuyuki Kanemaki ◽  
Reiichiro Sato ◽  
Ken Onda

Sign in / Sign up

Export Citation Format

Share Document