Banking Hope for Better Times—Does the Current State of Fertility Preservation for Prepubertal Boys with Cancer Justify the Cost?

2016 ◽  
Vol 196 (1) ◽  
pp. 18-20
Author(s):  
Elizabeth B. Yerkes ◽  
Courtney Finlayson ◽  
Yasmin C. Gosiengfiao
2016 ◽  
Vol 12 (01) ◽  
pp. 33
Author(s):  
Kutluk Oktay ◽  
Giuliano Bedoschi ◽  
◽  
◽  
◽  
...  

Fertility Preservation is an essential part of cancer care when treating young females and men. While semen cryopreservation is a straightforward approach for postpubertal men and there is the option of experimental testicular tissue freezing for prepubertal boys, the options for females are more tumultuous. The last 17 years brought us established approaches such the embryo and oocyte cryopreservation and the ovarian cryopreservation is ready to join the list. However, there still is no proven medical fertility preservation method and the controversy around the utility of GnRHa continues.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (11) ◽  
pp. 37-43 ◽  
Author(s):  
LIISA KOTANEN ◽  
MIKA KÖRKKÖ ◽  
ARI ÄMMÄLÄ ◽  
JOUKO NIINIMÄKI

The use of recovered paper as a raw material for paper production is by far the most economical and ecological strategy for the disposal of waste paper. However, paper production from recovered paper furnish generates a great amount of residues, and the higher the demand requirements for the end product, the higher the amount of rejected material. The reason for this is that the selectivity of the deinking process is limited; therefore, some valuable components are also lost in reject streams. The rejection of usable components affects the economics of recycled paper production. As the cost of waste disposal continues to increase, this issue is becoming more and more severe. This paper summarizes the current state of the resource efficiency in recycled pulp production and provides information on the volumes of rejected streams and the usable material within them. Various means to use these reject streams are also discussed, including the main findings of a recent thesis by the main author. This review summarizes current internal and external use of reject streams generated in the deinking operations.


2021 ◽  
Vol 22 (11) ◽  
pp. 5899
Author(s):  
Ewa Wrona ◽  
Maciej Borowiec ◽  
Piotr Potemski

CAR-T (chimeric antigen receptor T) cells have emerged as a milestone in the treatment of patients with refractory B-cell neoplasms. However, despite having unprecedented efficacy against hematological malignancies, the treatment is far from flawless. Its greatest drawbacks arise from a challenging and expensive production process, strict patient eligibility criteria and serious toxicity profile. One possible solution, supported by robust research, is the replacement of T lymphocytes with NK cells for CAR expression. NK cells seem to be an attractive vehicle for CAR expression as they can be derived from multiple sources and safely infused regardless of donor–patient matching, which greatly reduces the cost of the treatment. CAR-NK cells are known to be effective against hematological malignancies, and a growing number of preclinical findings indicate that they have activity against non-hematological neoplasms. Here, we present a thorough overview of the current state of knowledge regarding the use of CAR-NK cells in treating various solid tumors.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1105
Author(s):  
Antonio D. Martinez-Perez ◽  
Francisco Aznar ◽  
Guillermo Royo ◽  
Santiago Celma

In the current state of the art, WiFi-alike standards require achieving a high Image Rejection Ratio (IRR) while having low power consumption. Thus, quadrature structures based on passive ring mixers offer an attractive and widely used solution, as they can achieve a high IRR while being a passive block. However, it is not easy for the designer to know when a simple quadrature scheme is enough and when they should aim for a double quadrature structure approach, as the latter can improve the performance at the cost of requiring more area and complexity. This study focuses on the IRR, which crucially depends on the symmetry between the I and Q branches. Non-idealities (component mismatches, parasitics, etc.) will degrade the ideal balance by affecting the mixer and/or following/previous stages. This paper analyses the effect of imbalances, providing the constraints for obtaining a 40 dB IRR in the case of a conversion from a one-hundred-megahertz signal to the five-gigahertz range (upconversion) and vice versa (downconversion) for simple and double quadrature schemes. All simulations were carried out with complete device models from 65 nm standard CMOS technology and also a post-layout Monte Carlo analysis was included for mismatch analysis. The final section includes guidelines to help designers choose the most adequate scheme for each case.


2018 ◽  
Vol 27 (07) ◽  
pp. 1860013 ◽  
Author(s):  
Swair Shah ◽  
Baokun He ◽  
Crystal Maung ◽  
Haim Schweitzer

Principal Component Analysis (PCA) is a classical dimensionality reduction technique that computes a low rank representation of the data. Recent studies have shown how to compute this low rank representation from most of the data, excluding a small amount of outlier data. We show how to convert this problem into graph search, and describe an algorithm that solves this problem optimally by applying a variant of the A* algorithm to search for the outliers. The results obtained by our algorithm are optimal in terms of accuracy, and are shown to be more accurate than results obtained by the current state-of-the- art algorithms which are shown not to be optimal. This comes at the cost of running time, which is typically slower than the current state of the art. We also describe a related variant of the A* algorithm that runs much faster than the optimal variant and produces a solution that is guaranteed to be near the optimal. This variant is shown experimentally to be more accurate than the current state-of-the-art and has a comparable running time.


Author(s):  
V. Sautkina

The following article is devoted to the study of current state of national education and healthcare systems. The cost of services in these areas constantly increases, there for even developed countries are forced to make significant efforts in order to maintain earlier achieved results. Due to this reason countries entered into the period of constant reforms with the purpose of maintaining that high level of health and educational services for all segments of population with a constant reduction of its volume of financing. The legal aspects of these changes are requiring manifestation of the will of politicians in order to overcome the opposition of parties which are defending their interests. As an example, the main opponents of the healthcare reforms proposed by Barak Obama in the USA are Republicans who are concerned about a significant increase of a state control over the entire national insurance system. The author comes to the conclusion that only joint actions of the government and every segment of population might actually improve the quality of medical and educational services.


2020 ◽  
Vol 11 (7-2020) ◽  
pp. 19-32
Author(s):  
Olga E. Konovalova ◽  
◽  
Nikolai M. Kuznetsov ◽  

The article tells the story of the creation of the Nizhne-Tulomskaya hydroelectric power station (HPP). The main energy parameters of the hydroelectric power station, the layoutof the main structures of the station, and archival photos of the construction time are given. Data on the production and consumption of electricity for own needs, the cost of 1 kW·h during the great Patriotic war are shown. It is told about the reconstruction and current state of the station.


2016 ◽  
pp. 221-230
Author(s):  
Shubhashree Uppangala ◽  
Guruprasad Kalthur ◽  
Satish Kumar Adiga

2014 ◽  
Vol 26 (12) ◽  
pp. 2669-2691 ◽  
Author(s):  
Terence D. Sanger

Human movement differs from robot control because of its flexibility in unknown environments, robustness to perturbation, and tolerance of unknown parameters and unpredictable variability. We propose a new theory, risk-aware control, in which movement is governed by estimates of risk based on uncertainty about the current state and knowledge of the cost of errors. We demonstrate the existence of a feedback control law that implements risk-aware control and show that this control law can be directly implemented by populations of spiking neurons. Simulated examples of risk-aware control for time-varying cost functions as well as learning of unknown dynamics in a stochastic risky environment are provided.


Sign in / Sign up

Export Citation Format

Share Document