Changes to nitrate isotopic composition of wastewater treatment effluent and rivers after upgrades to tertiary treatment in the Narragansett Bay watershed, RI

2016 ◽  
Vol 104 (1-2) ◽  
pp. 61-69 ◽  
Author(s):  
Courtney E. Schmidt ◽  
Rebecca S. Robinson ◽  
Lindsey Fields ◽  
Scott W. Nixon
1998 ◽  
Vol 38 (3) ◽  
pp. 127-134
Author(s):  
Jaap H. J. M. van der Graaf ◽  
Arjen F. van Nieuwenhuijzen

As yet, filtration of wastewater treatment effluent has not been practised in the Netherlands. The main objections were the expected high costs. In order to gain practical experience an investigation programme studied the applicability and optimization of effluent filtration. Especially multi-layer filtration with the addition of ironchloride seemed to be very effective. Very low concentrations of suspended solids and phosphorus were achieved, even at high filtration rates (up to 30 m/h). This leads to an impressive reduction of expected costs, down to Dfl. 0.02/m3 (treated water).


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1339
Author(s):  
Javier Bayo ◽  
Sonia Olmos ◽  
Joaquín López-Castellanos

This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate between forms, and reporting a daily emission of 1.6 × 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form, with 10 different colors and sizes mainly between 1–2 mm. Future efforts should be dedicated to source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal.


The rapid growth of the industries and population leads to increasing generation of industrial and municipal wastewater. This wastewater threatens directly or indirectly the human health and industrial processes. Therefore, it is necessary to develop a rapid, simple, eco-friendly, effective, and efficient method for eliminating pollutants from industrial and municipal wastewater. The wastewater treatment aims to remove pollutants including particles, organic/inorganic substances, and pathogenic microorganisms, and finally returned to the cycle. This chapter presents a brief introduction to the issue associated with municipal and industrial wastewater. Also, this chapter presents detailed information about the conventional wastewater treatment methods. Specifically, it discusses the steps involved in the wastewater treatment viz. primary, secondary, and tertiary treatment.


2019 ◽  
Vol 9 (12) ◽  
pp. 2500 ◽  
Author(s):  
Shun-hwa Lee ◽  
Yeon-jung Cho ◽  
Miran Lee ◽  
Byung-Dae Lee

We surveyed the variation in perfluorinated compound (PFC) concentrations entering urban wastewater treatment plants and then designed an optimal PFCs treatment method based on a pilot test. The PFCs influent concentration was found to be affected by the types of industries and operating rate. The concentration of PFCs in the wastewater treatment effluent was slightly lower than that of the influent. Thus, PFCs had not been adequately removed by the existing biological treatments. The pilot test results showed that about 10% of PFCs was removed by coagulation and precipitation, and the ozone and chlorine test showed that few, if any, PFCs were removed regardless of the oxidant dose. The activated carbon adsorption test showed that the removal significantly increased with empty bed contact time, with about a 60% removal in five minutes and over 90% removal in over 15 minutes. Therefore, a more stable and higher PFCs removal would result from continuous oxidation processes, such as ozone and adsorption processes involving activated carbon, rather than a single biological treatment.


Sign in / Sign up

Export Citation Format

Share Document