Environmental impacts of grey water discharge from ships in the Baltic Sea

2020 ◽  
Vol 152 ◽  
pp. 110891 ◽  
Author(s):  
Erik Ytreberg ◽  
Martin Eriksson ◽  
Ilja Maljutenko ◽  
Jukka-Pekka Jalkanen ◽  
Lasse Johansson ◽  
...  
2021 ◽  
Vol 25 (1) ◽  
pp. 233-242
Author(s):  
Ieva Siksnane ◽  
Ainis Lagzdins

Abstract The Baltic Sea is the youngest sea on our planet, the environment of the sea is considered to be unique and fragile. It is affected by various human activities resulting in the impairment of water quality. Riverine nutrient (nitrogen and phosphorus) loads are among the major causes of eutrophication of the Baltic Sea. This study examines temporal trends in water discharge, total phosphorus (TP) and orthophosphate-phosphorus (PO4-P) concentrations and losses from three agricultural runoff monitoring sites in Latvia including Berze, Mellupite, and Vienziemite. The annual datasets of TP and PO4-P concentrations and losses were tested for statistical trends using a nonparametric test - the Mann-Kendall trend test. The timeframe of this study was from 1995 until 2018. The results show a large variety of annual mean concentrations and losses of TP and PO4-P in the study period. No statistically significant trend was detected for TP losses. Meanwhile, statistically significant downward trends were observed for TP concentrations in four out of six study sites and in two study sites for PO4-P concentrations.


1973 ◽  
Vol 4 (2) ◽  
pp. 105-118 ◽  
Author(s):  
I. S. ZEKTZER

The methods for quantitatively estimating ground-water discharge to the Baltic Sea and the possibilities of applying these methods to investigations of the role of ground water in the water and salt balances of the Baltic Sea are discussed. The combined hydrological and hydrogeological method, the hydrodynamic method, and the method of the average long-term water balance of recharge areas are recommended for general quantitative estimation of ground-water discharge to the sea. Data on the ground-water discharge to the Baltic Sea from the zone of intensive circulation (relatively shallow aquifers) within the U.S.S.R. are presented. Certain conclusions are drawn, and objectives of future investigations are mentioned.


1994 ◽  
Vol 27 (2) ◽  
pp. 128-157 ◽  
Author(s):  
L. Landner ◽  
O. Grahn ◽  
J. Hardig ◽  
K.J. Lehtinen ◽  
C. Monfelt ◽  
...  

Author(s):  
Jouni Räisänen

The warming of the global climate is expected to continue in the 21st century, although the magnitude of change depends on future anthropogenic greenhouse gas emissions and the sensitivity of climate to them. The regional characteristics and impacts of future climate change in the Baltic Sea countries have been explored since at least the 1990s. Later research has supported many findings from the early studies, but advances in understanding and improved modeling tools have made the picture gradually more comprehensive and more detailed. Nevertheless, many uncertainties still remain.In the Baltic Sea region, warming is likely to exceed its global average, particularly in winter and in the northern parts of the area. The warming will be accompanied by a general increase in winter precipitation, but in summer, precipitation may either increase or decrease, with a larger chance of drying in the southern than in the northern parts of the region. Despite the increase in winter precipitation, the amount of snow is generally expected to decrease, as a smaller fraction of the precipitation falls as snow and midwinter snowmelt episodes become more common. Changes in windiness are very uncertain, although most projections suggest a slight increase in average wind speed over the Baltic Sea. Climatic extremes are also projected to change, but some of the changes will differ from the corresponding change in mean climate. For example, the lowest winter temperatures are expected to warm even more than the winter mean temperature, and short-term summer precipitation extremes are likely to become more severe, even in the areas where the mean summer precipitation does not increase.The projected atmospheric changes will be accompanied by an increase in Baltic Sea water temperature, reduced ice cover, and, according to most studies, reduced salinity due to increased precipitation and river runoff. The seasonal cycle of runoff will be modified by changes in precipitation and earlier snowmelt. Global-scale sea level rise also will affect the Baltic Sea, but will be counteracted by glacial isostatic adjustment. According to most projections, in the northern parts of the Baltic Sea, the latter will still dominate, leading to a continued, although decelerated, decrease in relative sea level. The changes in the physical environment and climate will have a number of environmental impacts on, for example, atmospheric chemistry, freshwater and marine biogeochemistry, ecosystems, and coastal erosion. However, future environmental change in the region will be affected by several interrelated factors. Climate change is only one of them, and in many cases its effects may be exceeded by other anthropogenic changes.


Boreas ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Christian Christiansen ◽  
Helmar Kunzendorf ◽  
Kay-Christian Emeis ◽  
Rudolf Endler ◽  
Ulrich Struck ◽  
...  

2003 ◽  
pp. 136-146
Author(s):  
K. Liuhto

Statistical data on reserves, production and exports of Russian oil are provided in the article. The author pays special attention to the expansion of opportunities of sea oil transportation by construction of new oil terminals in the North-West of the country and first of all the largest terminal in Murmansk. In his opinion, one of the main problems in this sphere is prevention of ecological accidents in the process of oil transportation through the Baltic sea ports.


Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


Sign in / Sign up

Export Citation Format

Share Document