Improvements on dry friction and wear properties for reaction-sintered silicon carbide by the matching size of SiC particles

2007 ◽  
Vol 28 (2) ◽  
pp. 735-738 ◽  
Author(s):  
Kezheng Sang ◽  
Lin Liu ◽  
Zhihao Jin
2012 ◽  
Vol 482-484 ◽  
pp. 1298-1301
Author(s):  
Fu Gang Yan ◽  
Shuai Yan ◽  
Feng Liu ◽  
Bin Lin

Taking into account the condition that dry friction may occur when Si3N4 and SiC are self-made into friction pair, experiments are carried out to contrast the friction and wear properties under the condition of dry friction. In this experiment SiC friction pair presents better friction and wear properties, whose ultimate bearing capacity is better than Si3N4.


2010 ◽  
Vol 658 ◽  
pp. 456-459
Author(s):  
Ke Zheng Sang ◽  
Wen Chao Wang ◽  
Gang Qiang Geng

The composite of silicon carbide with nickel and lead oxide was prepared by reaction sintered method. The phase compositions of the composites were studied by XRD, SEM and EDX. Friction and wear properties of the composites in dry conditions at the temperatures 15°C, 300°C and 600°C were tested using a pin-on-disk tribometer. The results showed that NiSi2 was formed and located between the SiC particles during sintering process. However the PbO was remained and distributed uniformly in the composites besides a little of Pb4SiO6 were formed. Friction coefficient of the composites decreased with the increase of the temperature and was about 0.2 at 600°C. And wear resistance of the composites was improved at all test temperatures comparing with that of the Si/SiC.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


2017 ◽  
Vol 266 ◽  
pp. 155-164
Author(s):  
Chao Feng ◽  
Yi Xie ◽  
Zhong Wu

In this study, attempt has been made to investigate the effect of SiC particles on the friction and wear properties of Ni/SiC composites manufactured by electrodeposition, especially for the composites with high-temperature treatment.For this purpose, α-Al2O3 was coated on the surfaces of SiC particles by sol-gel technology to inhibit interfacial reaction of SiC and nickel at high temperature. Both of the Ni/α-Al2O3-coated SiC (Ni/CSp) and Ni/uncoated SiC (Ni/UCSp) composites were treated at 600 °C to study the resulting wear behaviour. The results indicated that with heat treatment at 600 °C, the Ni/CSp composite had better tribological properties than the Ni/UCSp composite. It was proved that the uncoated SiC particles have reacted completely with nickel leaving many defects, while the coated SiC particles still remained in the Ni/CSp composite hardening the nickel matrix and supporting the counterpart, thus improving the wear resistance of Ni/CSp composite with relatively low friction coefficient and wear mass loss compared to the Ni/UCSp composite.


2018 ◽  
Vol 913 ◽  
pp. 205-211
Author(s):  
Dong Mei Liu ◽  
Qiang Song Wang ◽  
Wei Yuan ◽  
Xu Jun Mi

A comparative study on the friction and wear properties of three kinds of copper alloys, including Cu-Ni based, Cu-Al and Cu-Be alloys was carried out in this study. The friction pair was stainless steel, and both dry and MoS2 lubrication friction experiments were investigated. During the experiments, different loads were chosen for different alloys. It was found that under dry friction condition, the friction coefficients of both Cu-Ni based and Cu-Al alloys did not change as the loads changes, whereas the friction coefficient of Cu-Be alloy increased as the loads increases. Under lubrication friction condition, the friction coefficients of all three alloys did not change as the load changes. The results show that the dry friction coefficient of Cu-Ni based alloy was the largest (0.74), the Cu-Al alloy next (0.60), and the Cu-Be alloy had the smallest dry friction coefficient (0.54). The lubrication friction coefficient of Cu-Ni based and Cu-Be was equal and relatively smaller (0.12), whereas the Cu-Al alloy had a relative larger lubrication friction coefficient (0.27). The microstructure observations were consistent with the friction and wear performance, and the SEM results show that different wear mechanisms were dominated for different alloys.


Wear ◽  
2020 ◽  
Vol 456-457 ◽  
pp. 203352 ◽  
Author(s):  
Yueying Zhu ◽  
Huajie Qu ◽  
Mei Luo ◽  
Chunlei He ◽  
Jianjun Qu

2015 ◽  
Vol 808 ◽  
pp. 137-142 ◽  
Author(s):  
Virgil Iliuţă ◽  
Minodora Rîpă ◽  
Adriana Preda ◽  
Gabriel Andrei

This paper presents an experimental evaluation of friction and wear properties of a composite material-moglice - made by Diamant Metallplastic GmbH company, from Germany. This material is a polymeric matrix reinforced with particles of cristobalite (αSiO2) and molybdenum disulphide (MoS2). The material is recommended by the manufacturer for repairing metal parts. This material was tribologically tested in dry friction conditions, on a ball on flat configuration, using the reciprocating method, on a CETR UMT-2 tribometer (Bruker Corporation). The counterpart was a steel ball. The tests were performed at room temperature in normal conditions of relative humidity of 40-60% using an average sliding speed of 3.5 mm/s. The tests were carried out at normal loads of 20, 30, 40 and 50N over a sliding distance of 100 m. The wear traces obtained were optically examined with μSCAN laser profilometer (NANOFOCUS).


Sign in / Sign up

Export Citation Format

Share Document