Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties

2018 ◽  
Vol 155 ◽  
pp. 36-45 ◽  
Author(s):  
Peng Wen ◽  
Maximilian Voshage ◽  
Lucas Jauer ◽  
Yanzhe Chen ◽  
Yu Qin ◽  
...  
2017 ◽  
Vol 107 (06) ◽  
pp. 415-419
Author(s):  
M. Hillebrecht ◽  
V. Uhlenwinkel ◽  
A. von Hehl ◽  
H. Zapf ◽  
B. Schob

Mithilfe laserbasierter generativer Fertigungsverfahren (Laser Additive Manufacturing – LAM) ist es möglich, potentiell komplexe Bauteilgeometrien variantenreich herzustellen. Damit kann Gewicht eingespart werden und Funktionen sind integrierbar. In Kombination mit Automatisierungs- und innovativer Lasertechnik in der Schweiß- und Schneidapplikation lässt sich dieser Prozess wirtschaftlich nutzen. Durch pulverbettbasierte Lasergenerierverfahren können metallische Bauteile schichtweise aufgebaut werden, jedoch ist die Auswahl der Werkstoffe limitiert. Im Forschungsprojekt StaVari (Additive Fertigungsprozesse für komplexe Produkte in variantenreicher und hochfunktionaler Stahlbauweisen) vereinen sich die neuesten Erkenntnisse in Material-, Laser-, Füge- und Automatisierungstechnik, um modernen Anforderungen der Automobilbranche in der Massenfertigung sowie bei der Medizintechnik in der Kleinserie gerecht zu werden.   Laser Additive Manufacturing LAM has the potential to generate complex geometries. Through this weight reduction, functional integration and multi-variant production is possible. In combination with automation and innovative laser technology applicated in welding and cutting, this process can be used economically. With powderbed based laser additive manufacturing metal parts can be built up layer by layer. However selection of available metals is limited. In the project StaVari latest findings in material-, laser-, joining and automation technology are joint by qualified partners to meet modern automotive demands in mass production and medicine technology for small batch series.


Author(s):  
Xiaoqing Wang ◽  
Xibing Gong ◽  
Kevin Chou

This study presents a thorough literature review on the powder-bed laser additive manufacturing processes such as selective laser melting (SLM) of Inconel 718 parts. The paper first introduces the general aspects of powder-bed laser additive manufacturing and then discusses the unique characteristics and advantages of SLM. Moreover, the bulk of this study includes extensive discussions of microstructures and mechanical properties, together with the application ranges, of Inconel 718 parts fabricated by SLM.


2015 ◽  
Vol 651-653 ◽  
pp. 713-718 ◽  
Author(s):  
Marion Merklein ◽  
Raoul Plettke ◽  
Daniel Junker ◽  
Adam Schaub ◽  
Bhrigu Ahuja

The quality of additive manufactured parts however depends pretty much on the workers experience to control porosity, layer linkage and surface roughness. To analyze the robustness of the Laser Beam Melting (LBM) process a Round Robin test was made in which specimens from four institutes from different countries were tested and compared. For the tests each institute built a set of specimens out of stainless steel 1.4540. The aim of this work is to analyze the influence of the process parameters on the mechanical properties. The results show that there is a high potential for additive manufacturing but also a lot of further research is necessary to optimize this technology.


2018 ◽  
Vol 22 ◽  
pp. 537-547 ◽  
Author(s):  
Arshad Harooni ◽  
Mehrdad Iravani ◽  
Amir Khajepour ◽  
J. Mitch King ◽  
Ahmed Khalifa ◽  
...  

2017 ◽  
Vol 23 (6) ◽  
pp. 1119-1129 ◽  
Author(s):  
Lanlan Qin ◽  
Changjun Chen ◽  
Min Zhang ◽  
Kai Yan ◽  
Guangping Cheng ◽  
...  

Purpose Laser additive manufacturing (LAM) technology based on powder bed has been used to manufacture complex geometrical components. In this study, IN625 superalloys were fabricated by high-power fiber laser without cracks, bounding errors or porosity. Meanwhile, the objectives of this paper are to systemically investigate the microstructures, micro-hardness and the precipitated Laves phase of deposited-IN625 under different annealing temperatures. Design/methodology/approach The effects of annealing temperatures on the microstructure, micro-hardness and the precipitated Laves phase were studied by optical microscope (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), selected area electron diffraction (SAED), backscattered electron (BSE) imaging in the SEM and transmission electron microscopy (TEM), respectively. The thermal stability of the dendritic morphology about IN625 superalloys was investigated through annealing at temperatures range from 1,000°C to 1,200°C. Findings It is found that the microstructure of deposited-IN625 was typical dendrite structure. Besides, some Laves phase precipitated in the interdendritic region results in the segregation of niobium and molybdenum. The thermal stability indicate that the morphology of dendrite can be stable up to 1,000°C. With the annealing temperatures increasing from 1,000 to 1,200°C, the Laves phase partially dissolves into the γ-Ni matrix, and the morphology of the remaining Laves phase is changing from irregular shape to rod-like or block-like shape. Research limitations/implications The heat treatment used on the IN625 superalloys is helpful for knowing the evolution of microstructures and precipitated phases thermal stability and mechanical properties. Practical implications Due to the different kinds of application conditions, the original microstructure of the IN625 superalloys fabricated by LAM may not be ideal. So exploring the influence of annealing treatment on IN625 superalloys can bring theory basis and guidance for actual production. Originality/value This study continues valuing the fabrication of IN625 by LAM. It shows the effect of annealing temperatures on the shape, size and distribution of Laves phase and the microstructures of deposited-IN625 superalloys.


Sign in / Sign up

Export Citation Format

Share Document