Emission analysis of tractor engine in dual-fuel mode: Optimization of pilot fuel injection

2020 ◽  
Vol 33 ◽  
pp. 3283-3287
Author(s):  
K. Velmurugan ◽  
J. Arunprasad ◽  
R. Thirugnanasambantham
Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1396
Author(s):  
Hao Guo ◽  
Song Zhou ◽  
Jiaxuan Zou ◽  
Majed Shreka

The global demand for clean fuels is increasing in order to meet the requirements of the International Maritime Organization (IMO) of 0.5% global Sulphur cap and Tier III emission limits. Natural gas has begun to be popularized on liquefied natural gas (LNG) ships because of its low cost and environment friendly. In large-bore marine engines, ignition with pilot fuel in the prechamber is a good way to reduce combustion variability and extend the lean-burn limit. However, the occurrence of knock limits the increase in power. Therefore, this paper investigates the effect of pilot fuel injection conditions on performance and knocking of a marine 2-stroke low-pressure dual-fuel (LP-DF) engine. The engine simulations were performed under different pilot fuel parameters. The results showed that the average in-cylinder temperature, the average in-cylinder pressure, and the NOx emissions gradually decreased with the delay of the pilot injection timing. Furthermore, the combustion situation gradually deteriorated as the pilot injection duration increased. A shorter pilot injection duration was beneficial to reduce NOx pollutant emissions. Moreover, the number of pilot injector orifices affected the ignition of pilot fuel and the flame propagation speed inside the combustion chamber.


1990 ◽  
Vol 112 (3) ◽  
pp. 413-421 ◽  
Author(s):  
J. Workman ◽  
G. M. Beshouri

Current dual fuel engines utilizing standard mechanical (Bosch type) fuel injection systems set to 5–6 percent pilot delivery do not appear capable of reducing NOx emissions much below the current minimum of 4 g/bhp-h without incurring substantial penalties in efficiency and operability. A prototype Electronic Pilot Fuel Injector (EPFI) was designed that overcomes the shortcomings of the mechanical injection system, consistently delivering 3 percent or less pilot at pressures as high as 20,000 psi. The EPFI was installed and tested in one cylinder of a standard production dual fuel engine operating at a waste water treatment facility. A feasibility test confirmed that the engine would indeed operate satisfactorily at 2.9 percent pilot. Comparisons with baseline data revealed the EPFI yielded a 45 percent reduction in NOx emissions with a 3 percent or greater improvement in efficiency. Further optimization of the system, discussed in Part II, indicates that even greater reductions in NOx emissions can be obtained without incurring a penalty in fuel consumption.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2280 ◽  
Author(s):  
Andrey Kozlov ◽  
Vadim Grinev ◽  
Alexey Terenchenko ◽  
Gennady Kornilov

Modern research in the area of internal combustion engines is focused on researching and investigating the technologies that will improve fuel efficiency and decrease emissions. Application of dual-fuel engines is considered as a potential solution to these problems. In the dual-fuel engine, a natural gas-air mixture is ignited by a small amount of the diesel fuel directly injected into a combustion chamber. Pilot fuel injection parameters can strongly effect the combustion process. The aim of this paper is to investigate the effect of such fuel-supply parameters as pilot fuel mass, pilot fuel injection pressure, pilot fuel injection timing and excess air ratio on the combustion process. Investigation is based on the data obtained during bench tests conducted with the use of measurement equipment. The dependences of engine characteristics from the fuel supply parameters under review were obtained based on the results of the experimental study. Optimal values for every investigated fuel-supply parameter were chosen based on the obtained results. Over the course of the investigation, the coefficient for heat release rate according to the Vibe equation was calculated for each operating point.


Author(s):  
Akshit Dewan ◽  
Bassem H. Ramadan ◽  
Craig Hoff

A numerical study on the use of biogas and diesel in a dual-fueled directly-injected engine has been conducted. The objective of this study is to determine the effect of using biogas on engine performance, combustion, and emissions. The main fuel is biogas which is premixed with air in order to form a homogeneous mixture. The mixture is then compressed and ignited by injecting diesel fuel before TDC. The pilot fuel is expected to lead to multiple ignition points in the cylinder in order to achieve uniform combustion in the cylinder. The expected benefits are lower nitrogen oxides and soot compared to pure diesel combustion. Numerical simulations using CFD software were used to simulate fuel-air mixture, compression, fuel injection, combustion, and emissions. Different quantities of biogas and diesel were investigated to determine the optimum mixture ratio. Since biogas, which is natural gas produced from human waste, contains large quantities of carbon dioxide, the effect of carbon dioxide content in the fuel was investigated. The results of this study agree very well with results from other studies found in the literature.


Sign in / Sign up

Export Citation Format

Share Document