The challenge of modeling nuclear receptor regulatory networks in mammalian cells

2011 ◽  
Vol 334 (1-2) ◽  
pp. 91-97 ◽  
Author(s):  
Vidhya Jagannathan ◽  
Marc Robinson-Rechavi
2010 ◽  
Vol 191 (4) ◽  
pp. 809-825 ◽  
Author(s):  
Stacey E. Wirt ◽  
Adam S. Adler ◽  
Véronique Gebala ◽  
James M. Weimann ◽  
Bethany E. Schaffer ◽  
...  

The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.


2020 ◽  
Vol 48 (21) ◽  
pp. 12326-12335
Author(s):  
Silke Schreiner ◽  
Anna Didio ◽  
Lee-Hsueh Hung ◽  
Albrecht Bindereif

Abstract Circular RNAs (circRNAs) are a class of noncoding RNAs, generated from pre-mRNAs by circular splicing of exons and functionally largely uncharacterized. Here we report on the design, expression, and characterization of artificial circRNAs that act as protein sponges, specifically binding and functionally inactivating hnRNP (heterogeneous nuclear ribonucleoprotein) L. HnRNP L regulates alternative splicing, depending on short CA-rich RNA elements. We demonstrate that designer hnRNP L-sponge circRNAs with CA-repeat or CA-rich sequence clusters can efficiently and specifically modulate splicing-regulatory networks in mammalian cells, including alternative splicing patterns and the cellular distribution of a splicing factor. This new strategy can in principle be applied to any RNA-binding protein, opening up new therapeutic strategies in molecular medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsuyoshi Fukushima ◽  
Yosuke Tanaka ◽  
Keito Adachi ◽  
Nanami Masuyama ◽  
Akiho Tsuchiya ◽  
...  

AbstractCell behavior is controlled by complex gene regulatory networks. Although studies have uncovered diverse roles of individual genes, it has been challenging to record or control sequential genetic events in living cells. In this study, we designed two cellular chain reaction systems that enable sequential sgRNA activation in mammalian cells using a nickase Cas9 tethering of a cytosine nucleotide deaminase (nCas9-CDA). In these systems, thymidine (T)-to-cytosine (C) substitutions in the scaffold region of the sgRNA or the TATA box-containing loxP sequence (TATAloxP) are corrected by the nCas9-CDA, leading to activation of the next sgRNA. These reactions can occur multiple times, resulting in cellular chain reactions. As a proof of concept, we established a chain reaction by repairing sgRNA scaffold mutations in 293 T cells. Importantly, the results obtained in yeast or in vitro did not match those obtained in mammalian cells, suggesting that in vivo chain reactions need to be optimized in appropriate cellular contexts. Our system may lay the foundation for building cellular chain reaction systems that have a broad utility in the future biomedical research.


2017 ◽  
Author(s):  
Luca Tosti ◽  
James Ashmore ◽  
Boon Siang Nicholas Tan ◽  
Benedetta Carbone ◽  
Tapan K Mistri ◽  
...  

AbstractThe identification of transcription factor (TF) binding sites in the genome is critical to understanding gene regulatory networks (GRNs). While ChIP-seq is commonly used to identify TF targets, it requires specific ChIP-grade antibodies and high cell numbers, often limiting its applicability. DNA adenine methyltransferase identification (DamID), developed and widely used in Drosophila, is a distinct technology to investigate protein-DNA interactions. Unlike ChIP-seq, it does not require antibodies, precipitation steps or chemical protein-DNA crosslinking, but to date it has been seldom used in mammalian cells due to technical impediments. Here we describe an optimised DamID method coupled with next generation sequencing (DamID-seq) in mouse cells, and demonstrate the identification of the binding sites of two TFs, OCT4 and SOX2, in as few as 1,000 embryonic stem cells (ESCs) and neural stem cells (NSCs), respectively. Furthermore, we have applied this technique in vivo for the first time in mammals. Oct4 DamID-seq in the gastrulating mouse embryo at 7.5 days post coitum (dpc) successfully identified multiple Oct4 binding sites proximal to genes involved in embryo development, neural tube formation, mesoderm-cardiac tissue development, consistent with the pivotal role of this TF in post-implantation embryo. This technology paves the way to unprecedented investigations of TF-DNA interactions and GRNs in specific cell types with limited availability in mammals including in vivo samples.


2019 ◽  
Vol 6 (6) ◽  
pp. 1176-1188 ◽  
Author(s):  
Yuxin Chen ◽  
Yang Shen ◽  
Pei Lin ◽  
Ding Tong ◽  
Yixin Zhao ◽  
...  

Abstract Food web and gene regulatory networks (GRNs) are large biological networks, both of which can be analyzed using the May–Wigner theory. According to the theory, networks as large as mammalian GRNs would require dedicated gene products for stabilization. We propose that microRNAs (miRNAs) are those products. More than 30% of genes are repressed by miRNAs, but most repressions are too weak to have a phenotypic consequence. The theory shows that (i) weak repressions cumulatively enhance the stability of GRNs, and (ii) broad and weak repressions confer greater stability than a few strong ones. Hence, the diffuse actions of miRNAs in mammalian cells appear to function mainly in stabilizing GRNs. The postulated link between mRNA repression and GRN stability can be seen in a different light in yeast, which do not have miRNAs. Yeast cells rely on non-specific RNA nucleases to strongly degrade mRNAs for GRN stability. The strategy is suited to GRNs of small and rapidly dividing yeast cells, but not the larger mammalian cells. In conclusion, the May–Wigner theory, supplanting the analysis of small motifs, provides a mathematical solution to GRN stability, thus linking miRNAs explicitly to ‘developmental canalization’.


2021 ◽  
Vol 118 (48) ◽  
pp. e2025265118
Author(s):  
Timothy W. Bumpus ◽  
Shiying Huang ◽  
Reika Tei ◽  
Jeremy M. Baskin

Enzymes that produce second messengers are highly regulated. Revealing the mechanisms underlying such regulation is critical to understanding both how cells achieve specific signaling outcomes and return to homeostasis following a particular stimulus. Pooled genome-wide CRISPR screens are powerful unbiased approaches to elucidate regulatory networks, their principal limitation being the choice of phenotype selection. Here, we merge advances in bioorthogonal fluorescent labeling and CRISPR screening technologies to discover regulators of phospholipase D (PLD) signaling, which generates the potent lipid second messenger phosphatidic acid. Our results reveal glycogen synthase kinase 3 as a positive regulator of protein kinase C and PLD signaling. More generally, this work demonstrates how bioorthogonal, activity-based fluorescent tagging can expand the power of CRISPR screening to uncover mechanisms regulating specific enzyme-driven signaling pathways in mammalian cells.


2003 ◽  
Vol 83 (7) ◽  
pp. 810-820 ◽  
Author(s):  
Beat P. Kramer ◽  
Wilfried Weber ◽  
Martin Fussenegger

2005 ◽  
Vol 4 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Sara A. Zurita-Martinez ◽  
Maria E. Cardenas

ABSTRACT In the budding yeast Saccharomyces cerevisiae, the Tor and cyclic AMP-protein kinase A (cAMP-PKA) signaling cascades respond to nutrients and regulate coordinately the expression of genes required for cell growth, including ribosomal protein (RP) and stress-responsive (STRE) genes. The inhibition of Tor signaling by rapamycin results in repression of the RP genes and induction of the STRE genes. Mutations that hyperactivate PKA signaling confer resistance to rapamycin and suppress the repression of RP genes imposed by rapamycin. By contrast, partial inactivation of PKA confers rapamycin hypersensitivity but only modestly affects RP gene expression. Complete inactivation of PKA impairs RP gene expression and concomitantly enhances STRE gene expression; remarkably, this altered transcriptional pattern is still sensitive to rapamycin and thus subject to Tor control. These findings illustrate how the Tor and cAMP-PKA signaling pathways respond to nutrient signals to govern gene expression required for cell growth via two parallel routes, and they have broad implication for our understanding of analogous regulatory networks in normal and neoplastic mammalian cells.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009492
Author(s):  
Brice Beinsteiner ◽  
Gabriel V. Markov ◽  
Stéphane Erb ◽  
Yassmine Chebaro ◽  
Alastair G. McEwen ◽  
...  

Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors.


Sign in / Sign up

Export Citation Format

Share Document