SUZ-4 zeolite membrane fabricated by dynamic hydrothermal crystallization for pervaporation separation of MeOH/MMA mixture

2021 ◽  
pp. 119974
Author(s):  
Yu-Fei Lin ◽  
Zi-Ming Zhan ◽  
Zhen-Liang Xu ◽  
Zhe-Ru Shi ◽  
Xin Zhang ◽  
...  
2009 ◽  
Vol 27 (9) ◽  
pp. 1692-1696 ◽  
Author(s):  
Pei Chen ◽  
Xinbing Chen ◽  
Xiangshu Chen ◽  
Zhongwei An ◽  
Hidetoshi Kita

1997 ◽  
pp. 45-46 ◽  
Author(s):  
Hidetoshi Kita ◽  
Tsutomu Inoue ◽  
Hidetoshi Asamura ◽  
Kazuhiro Tanaka ◽  
Kenichi Okamoto

Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 249
Author(s):  
Yasuhisa Hasegawa ◽  
Chie Abe ◽  
Mayumi Natsui ◽  
Ayumi Ikeda

The polycrystalline CHA-type zeolite layer with Si/Al = 18 was formed on the porous α-Al2O3 tube in this study, and the gas permeation properties were determined using single-component H2, CO2, N2, CH4, n-C4H10, and SF6 at 303–473 K. The membrane showed permeation behavior, wherein the permeance reduced with the molecular size, attributed to the effect of molecular sieving. The separation performances were also determined using the equimolar mixtures of N2–SF6, CO2–N2, and CO2–CH4. As a result, the N2/SF6 and CO2/CH4 selectivities were as high as 710 and 240, respectively. However, the CO2/N2 selectivity was only 25. These results propose that the high-silica CHA-type zeolite membrane is suitable for the separation of CO2 from CH4 by the effect of molecular sieving.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2261
Author(s):  
Enikő Bárdos ◽  
Viktória A. Márta ◽  
Szilvia Fodor ◽  
Endre-Zsolt Kedves ◽  
Klara Hernadi ◽  
...  

Bismuth oxychloride photocatalysts were obtained using solvothermal synthesis and different additives (CTAB—cetyltrimethylammonium bromide, CTAC—cetyltrimethylammonium chloride, PVP–polyvinylpyrrolidone, SDS–sodium dodecylsulphate, U—urea and TU—thiourea). The effect of the previously mentioned compounds was analyzed applying structural (primary crystallite size, crystal phase composition, etc.), morphological (particle geometry), optical (band gap energy) parameters, surface related properties (surface atoms’ oxidation states), and the resulted photocatalytic activity. A strong dependency was found between the surface tension of the synthesis solutions and the overall morpho-structural parameters. The main finding was that the characteristics of the semiconductors can be tuned by modifying the surface tension of the synthesis mixture. It was observed after the photocatalytic degradation, that the white semiconductor turned to grey. Furthermore, we attempted to explain the gray color of BiOCl catalysts after the photocatalytic decompositions by Raman and XPS studies.


2005 ◽  
Vol 631 (6-7) ◽  
pp. 1095-1100 ◽  
Author(s):  
Konstantin V. Domasevitch ◽  
Ishtvan Boldog ◽  
Eduard B. Rusanov ◽  
Jens Hunger ◽  
Steffen Blaurock ◽  
...  

2021 ◽  
Vol 38 (2) ◽  
pp. 411-421
Author(s):  
Shivshankar Chaudhari ◽  
KieYong Cho ◽  
SoHyan Joo ◽  
ByeongYun An ◽  
SongEun Lee ◽  
...  

Author(s):  
I. G. Wenten ◽  
K. Khoiruddin ◽  
R. R. Mukti ◽  
W. Rahmah ◽  
Z. Wang ◽  
...  

Coupling chemical reaction with membrane separation or known as membrane reactor (MR) has been demonstrated by numerous studies and showed that this strategy has successfully addressed the goal of process intensification.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 124 ◽  
Author(s):  
Kevin Hinkle ◽  
Xiaoyu Wang ◽  
Xuehong Gu ◽  
Cynthia Jameson ◽  
Sohail Murad

In this report we have discussed the important role of molecular modeling, especially the use of the molecular dynamics method, in investigating transport processes in nanoporous materials such as membranes. With the availability of high performance computers, molecular modeling can now be used to study rather complex systems at a fraction of the cost or time requirements of experimental studies. Molecular modeling techniques have the advantage of being able to access spatial and temporal resolution which are difficult to reach in experimental studies. For example, sub-Angstrom level spatial resolution is very accessible as is sub-femtosecond temporal resolution. Due to these advantages, simulation can play two important roles: Firstly because of the increased spatial and temporal resolution, it can help understand phenomena not well understood. As an example, we discuss the study of reverse osmosis processes. Before simulations were used it was thought the separation of water from salt was purely a coulombic phenomenon. However, by applying molecular simulation techniques, it was clearly demonstrated that the solvation of ions made the separation in effect a steric separation and it was the flux which was strongly affected by the coulombic interactions between water and the membrane surface. Additionally, because of their relatively low cost and quick turnaround (by using multiple processor systems now increasingly available) simulations can be a useful screening tool to identify membranes for a potential application. To this end, we have described our studies in determining the most suitable zeolite membrane for redox flow battery applications. As computing facilities become more widely available and new computational methods are developed, we believe molecular modeling will become a key tool in the study of transport processes in nanoporous materials.


Sign in / Sign up

Export Citation Format

Share Document