The high-fat high-fructose hamster as an animal model for niacin’s biological activities in humans

Metabolism ◽  
2013 ◽  
Vol 62 (12) ◽  
pp. 1840-1849 ◽  
Author(s):  
Beth A. Connolly ◽  
Daniel P. O’Connell ◽  
Stefania Lamon-Fava ◽  
Daniel F. LeBlanc ◽  
Yu-Lin Kuang ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jai Sun Lee ◽  
Dae Won Jun ◽  
Eun Kyung Kim ◽  
Hye Joon Jeon ◽  
Ho Hyun Nam ◽  
...  

Background. We used high-fat (HF), high-fructose (HFr), and combination diets to create a dietary animal model of nonalcoholic fatty liver disease (NAFLD). Comparison of both clinical phenotypes has not been well defined. The purpose of this study was to compare histologic and metabolic characteristics between diets in an animal model of NAFLD.Methods. NAFLD was induced in rats by feeding them HF, HFr, and combination (HF + HFr) diets for 20 weeks. The degree of intrahepatic fat accumulation, inflammation, and oxidative stress was evaluated. Metabolic derangements were assessed by the oral glucose tolerance test and the intrahepatic insulin signal pathway.Results. Body weight gain and intrahepatic fat accumulation were more prominent in the HF feeding group than in the HFr group. The expressions of NOX-4 and TLR-4 were higher in the HF and HFr combination groups than in the HF-only group. Other intrahepatic inflammatory markers, MCP-1, TNF-α, and endoplasmic reticulum stress markers, were the highest in the HF + HFr combination group. Although intrahepatic fat deposition was less prominent in the HFr diet model, intrahepatic inflammation was noted.Conclusions. Intrahepatic inflammation and metabolic derangements were more prominent in the HF and HFr combination model than in the HF monodiet model.


2021 ◽  
Vol 22 (9) ◽  
pp. 4444
Author(s):  
Miey Park ◽  
Eun-Jung Park ◽  
So-Hyeun Kim ◽  
Hae-Jeung Lee

Obesity has become a worldwide health problem, and many significant inflammatory markers have been associated with the risk of side effects of obesity and obesity-related diseases. After a normal diet or high-fat diet with high-fructose water (HFHF) for 8 weeks, male Wistar rats were divided randomly into four experimental groups according to body weight. Next, for 8 weeks, a normal diet, HFHF diet, and HFHF diet with L. plantarum strains ATG-K2 or ATG-K6 were administered orally. Compared to the control group, the HFHF diet group showed significantly increased visceral fat, epididymal fat, and liver weight. The mRNA and protein expression levels of FAS and SREBP-1c were higher in the HFHF diet group than in the HFHF diet with L. plantarum strains ATG-K2 and ATG-K6. The HFHF diet with L. plantarum strain ATG-K2 showed significantly decreased inflammatory cytokine expression in the serum and small intestine compared to the HFHF diet group. Furthermore, histological morphology showed minor cell injury, less severe infiltration, and longer villi height in the small intestine ileum of the HFHF diet with L. plantarum strains groups than in the HFHF diet group. These results suggest that L. plantarum strains K2 and K6 may help reduce intestinal inflammation and could be used as treatment alternatives for intestinal inflammatory reactions and obesity.


2009 ◽  
Vol 7 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Haifeng Zhang ◽  
Yuxiu He ◽  
Pak Kwong Chung ◽  
Tom K. Tong ◽  
Frank H. Fu ◽  
...  

2010 ◽  
Vol 299 (4) ◽  
pp. R1082-R1090 ◽  
Author(s):  
Jill K. Morris ◽  
Gregory L. Bomhoff ◽  
John A. Stanford ◽  
Paige C. Geiger

Despite numerous clinical studies supporting a link between type 2 diabetes (T2D) and Parkinson's disease (PD), the clinical literature remains equivocal. We, therefore, sought to address the relationship between insulin resistance and nigrostriatal dopamine (DA) in a preclinical animal model. High-fat feeding in rodents is an established model of insulin resistance, characterized by increased adiposity, systemic oxidative stress, and hyperglycemia. We subjected rats to a normal chow or high-fat diet for 5 wk before infusing 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. Our goal was to determine whether a high-fat diet and the resulting peripheral insulin resistance would exacerbate 6-OHDA-induced nigrostriatal DA depletion. Prior to 6-OHDA infusion, animals on the high-fat diet exhibited greater body weight, increased adiposity, and impaired glucose tolerance. Two weeks after 6-OHDA, locomotor activity was tested, and brain and muscle tissue was harvested. Locomotor activity did not differ between the groups nor did cholesterol levels or measures of muscle atrophy. High-fat-fed animals exhibited higher homeostatic model assessment of insulin resistance (HOMA-IR) values and attenuated insulin-stimulated glucose uptake in fast-twitch muscle, indicating decreased insulin sensitivity. Animals in the high-fat group also exhibited greater DA depletion in the substantia nigra and the striatum, which correlated with HOMA-IR and adiposity. Decreased phosphorylation of HSP27 and degradation of IκBα in the substantia nigra indicate increased tissue oxidative stress. These findings support the hypothesis that a diet high in fat and the resulting insulin resistance may lower the threshold for developing PD, at least following DA-specific toxin exposure.


2021 ◽  
Vol 142 ◽  
pp. 112017
Author(s):  
Abodunrin Adebayo Ojetola ◽  
Wale Johnson Adeyemi ◽  
Ubong Edem David ◽  
Temitayo Olabisi Ajibade ◽  
Olumuyiwa Abiola Adejumobi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document