Unraveling the predator-prey relationship of Cupriavidus necator and Bacillus subtilis

2016 ◽  
Vol 192 ◽  
pp. 231-238 ◽  
Author(s):  
Ivana Seccareccia ◽  
Ákos T. Kovács ◽  
Ramses Gallegos-Monterrosa ◽  
Markus Nett
2018 ◽  
Vol 5 (12) ◽  
pp. 181447 ◽  
Author(s):  
Fredrick J. Larabee ◽  
Adrian A. Smith ◽  
Andrew V. Suarez

What is the limit of animal speed and what mechanisms produce the fastest movements? More than natural history trivia, the answer provides key insight into the form–function relationship of musculoskeletal movement and can determine the outcome of predator–prey interactions. The fastest known animal movements belong to arthropods, including trap-jaw ants, mantis shrimp and froghoppers, that have incorporated latches and springs into their appendage systems to overcome the limits of muscle power. In contrast to these examples of power amplification, where separate structures act as latch and spring to accelerate an appendage, some animals use a ‘snap-jaw’ mechanism that incorporates the latch and spring on the accelerating appendage itself. We examined the kinematics and functional morphology of the Dracula ant, Mystrium camillae , who use a snap-jaw mechanism to quickly slide their mandibles across each other similar to a finger snap. Kinematic analysis of high-speed video revealed that snap-jaw ant mandibles complete their strike in as little as 23 µsec and reach peak velocities of 90 m s −1 , making them the fastest known animal appendage. Finite-element analysis demonstrated that snap-jaw mandibles were less stiff than biting non-power-amplified mandibles, consistent with their use as a flexible spring. These results extend our understanding of animal speed and demonstrate how small changes in morphology can result in dramatic differences in performance.


Nano Hybrids ◽  
2013 ◽  
Vol 4 ◽  
pp. 61-85
Author(s):  
Mohd Farhan Khan ◽  
Akhter H. Ansari ◽  
M. Hameedullah ◽  
M.B. Lohani ◽  
Mohammad Mezbaul Alam ◽  
...  

Since few decades, the fabrications of metal oxide nanoparticles (MO-Nps) as well as their uses in various segments have been increased manifolds. An easy effort to produce an important category of MO-Nps as Zinc oxide nanoparticles (ZnO-Nps), with the assistance of mechano-solution method at various low temperatures, introducing Zinc acetate dihydrate and Sodium hydroxide into the molar solution of C19H42NBr complex (Cetrimonium bromide, CTAB) for much less than an hour was projected. The impact of this method performed at two different ranges of process temperatures was studied and the magnitude of the ZnO-Nps (like particle size, morphology and L/D dimensions) has been reported. On the top of this, the morphological study of these Nps has been presented. The characterization of the synthesized Nps was carried out with the help of SEM with EDS, XRD, UV-Vis spectroscopy. The scanning electron microscopy has revealed the synthesis of peanut-shaped ZnO nanobunches (NBs) at two different ranges of temperature. An overall viable growth of the solitary nanoparticles constituting of ZnO-NBs has also been put forth. Hence, the effect of temperature on C19H42NBr complex (stabilizer) has been reported. In addition, a postulated model depicting the relationship of the temperature effect on the process parameters of ZnO-NBs has also been floated. The Gram +ve bacteria, Bacillus subtilis is a rod shaped bacteria which is commonly known as normal gut commensal in humans. Due to the emergence of anti-biotic resistant drugs, alternate medications are under primary considerations. A noteworthy experimentation was concerned with anti-bacterial activity of therapeutically viable Gram +ve bacteria, Bacillus subtilis and it was found that reported ZnO-NBs have become the promising entities for terminating the growth of these bacterias.


Author(s):  
Logan D Crees ◽  
Phil DeVries ◽  
Carla M Penz

Abstract In general, butterfly ventral hind wing eyespots are considered to play a role in predator–prey interactions. These eyespots are prominent wing pattern elements in Brassolini butterflies, and they vary in size, position, and number across taxa. Female Caligo Hübner, 1819 (Lepidoptera, Nymphalidae) appear to use the large eyespots of lekking males as a mate-locating cue, but female Opsiphanes Doubleday, 1849 (Lepidoptera, Nymphalidae) do not because males patrol to find mates. These behaviors led us to predict that male Caligo should have larger eyespots than females, but eyespot size would not differ between sexes in Opsiphanes. Our analyses supported these predictions. As displacement of the eyespots to the center of the wing might make them more conspicuous, we asked if eyespot position and size covaried across the Brassolini phylogeny. While we found a positive association between position and size, the relationship of these two variables contained significant phylogenetic signal. Two Brassolini species show strong sexual dimorphism where females converge on the color pattern of sympatric species of Caligo. Their ventral hind wing eyespots are much larger than those of close relatives, approximating those of Caligo, and further reinforcing the importance of ventral hind wing eyespots as a visual signal in this group of butterflies. Importantly, our results suggest that, in addition to antipredation defense, ventral hind wing eyespots can function in mating activities, and consequently they might be evolving under both natural and sexual selection in Caligo butterflies.


1979 ◽  
Vol 8 (2) ◽  
pp. 245-248 ◽  
Author(s):  
R. K. Lawrence ◽  
T. F. Watson

2016 ◽  
Vol 198 (24) ◽  
pp. 3335-3344 ◽  
Author(s):  
Susanne Müller ◽  
Sarah N. Strack ◽  
Sarah E. Ryan ◽  
Mary Shawgo ◽  
Abigail Walling ◽  
...  

ABSTRACTSoil bacteria engage each other in competitive and cooperative ways to determine their microenvironments. In this study, we report the identification of a large number of genes required forMyxococcus xanthusto engageBacillus subtilisin a predator-prey relationship. We generated and tested over 6,000 individual transposon insertion mutants ofM. xanthusand found many new factors required to promote efficient predation, including the specialized metabolite myxoprincomide, an ATP-binding cassette (ABC) transporter permease, and a clustered regularly interspaced short palindromic repeat (CRISPR) locus encoding bacterial immunity. We also identified genes known to be involved in predation, including those required for the production of exopolysaccharides and type IV pilus (T4P)-dependent motility, as well as chemosensory and two-component systems. Furthermore, deletion of these genes confirmed their role during predation. Overall,M. xanthuspredation appears to be a multifactorial process, with multiple determinants enhancing predation capacity.IMPORTANCESoil bacteria engage each other in complex environments and utilize multiple traits to ensure survival. Here, we report the identification of multiple traits that enable a common soil organism,Myxococcus xanthus, to prey upon and utilize nutrients from another common soil organism,Bacillus subtilis. We mutagenized the predator and carried out a screen to identify genes that were required to either enhance or diminish capacity to consume prey. We identified dozens of genes encoding factors that contribute to the overall repertoire for the predator to successfully engage its prey in the natural environment.


Sign in / Sign up

Export Citation Format

Share Document